2023-09-28 更新
SCOB: Universal Text Understanding via Character-wise Supervised Contrastive Learning with Online Text Rendering for Bridging Domain Gap
Authors:Daehee Kim, Yoonsik Kim, DongHyun Kim, Yumin Lim, Geewook Kim, Taeho Kil
Inspired by the great success of language model (LM)-based pre-training, recent studies in visual document understanding have explored LM-based pre-training methods for modeling text within document images. Among them, pre-training that reads all text from an image has shown promise, but often exhibits instability and even fails when applied to broader domains, such as those involving both visual documents and scene text images. This is a substantial limitation for real-world scenarios, where the processing of text image inputs in diverse domains is essential. In this paper, we investigate effective pre-training tasks in the broader domains and also propose a novel pre-training method called SCOB that leverages character-wise supervised contrastive learning with online text rendering to effectively pre-train document and scene text domains by bridging the domain gap. Moreover, SCOB enables weakly supervised learning, significantly reducing annotation costs. Extensive benchmarks demonstrate that SCOB generally improves vanilla pre-training methods and achieves comparable performance to state-of-the-art methods. Our findings suggest that SCOB can be served generally and effectively for read-type pre-training methods. The code will be available at https://github.com/naver-ai/scob.
PDF ICCV 2023
点此查看论文截图
Masking Improves Contrastive Self-Supervised Learning for ConvNets, and Saliency Tells You Where
Authors:Zhi-Yi Chin, Chieh-Ming Jiang, Ching-Chun Huang, Pin-Yu Chen, Wei-Chen Chiu
While image data starts to enjoy the simple-but-effective self-supervised learning scheme built upon masking and self-reconstruction objective thanks to the introduction of tokenization procedure and vision transformer backbone, convolutional neural networks as another important and widely-adopted architecture for image data, though having contrastive-learning techniques to drive the self-supervised learning, still face the difficulty of leveraging such straightforward and general masking operation to benefit their learning process significantly. In this work, we aim to alleviate the burden of including masking operation into the contrastive-learning framework for convolutional neural networks as an extra augmentation method. In addition to the additive but unwanted edges (between masked and unmasked regions) as well as other adverse effects caused by the masking operations for ConvNets, which have been discussed by prior works, we particularly identify the potential problem where for one view in a contrastive sample-pair the randomly-sampled masking regions could be overly concentrated on important/salient objects thus resulting in misleading contrastiveness to the other view. To this end, we propose to explicitly take the saliency constraint into consideration in which the masked regions are more evenly distributed among the foreground and background for realizing the masking-based augmentation. Moreover, we introduce hard negative samples by masking larger regions of salient patches in an input image. Extensive experiments conducted on various datasets, contrastive learning mechanisms, and downstream tasks well verify the efficacy as well as the superior performance of our proposed method with respect to several state-of-the-art baselines.
PDF
点此查看论文截图
PARTICLE: Part Discovery and Contrastive Learning for Fine-grained Recognition
Authors:Oindrila Saha, Subhransu Maji
We develop techniques for refining representations for fine-grained classification and segmentation tasks in a self-supervised manner. We find that fine-tuning methods based on instance-discriminative contrastive learning are not as effective, and posit that recognizing part-specific variations is crucial for fine-grained categorization. We present an iterative learning approach that incorporates part-centric equivariance and invariance objectives. First, pixel representations are clustered to discover parts. We analyze the representations from convolutional and vision transformer networks that are best suited for this task. Then, a part-centric learning step aggregates and contrasts representations of parts within an image. We show that this improves the performance on image classification and part segmentation tasks across datasets. For example, under a linear-evaluation scheme, the classification accuracy of a ResNet50 trained on ImageNet using DetCon, a self-supervised learning approach, improves from 35.4% to 42.0% on the Caltech-UCSD Birds, from 35.5% to 44.1% on the FGVC Aircraft, and from 29.7% to 37.4% on the Stanford Cars. We also observe significant gains in few-shot part segmentation tasks using the proposed technique, while instance-discriminative learning was not as effective. Smaller, yet consistent, improvements are also observed for stronger networks based on transformers.
PDF
点此查看论文截图
CWCL: Cross-Modal Transfer with Continuously Weighted Contrastive Loss
Authors:Rakshith Sharma Srinivasa, Jaejin Cho, Chouchang Yang, Yashas Malur Saidutta, Ching-Hua Lee, Yilin Shen, Hongxia Jin
This paper considers contrastive training for cross-modal 0-shot transfer wherein a pre-trained model in one modality is used for representation learning in another domain using pairwise data. The learnt models in the latter domain can then be used for a diverse set of tasks in a zero-shot way, similar to Contrastive Language-Image Pre-training (CLIP)'' and
Locked-image Tuning (LiT)’’ that have recently gained considerable attention. Most existing works for cross-modal representation alignment (including CLIP and LiT) use the standard contrastive training objective, which employs sets of positive and negative examples to align similar and repel dissimilar training data samples. However, similarity amongst training examples has a more continuous nature, thus calling for a more `non-binary’ treatment. To address this, we propose a novel loss function called Continuously Weighted Contrastive Loss (CWCL) that employs a continuous measure of similarity. With CWCL, we seek to align the embedding space of one modality with another. Owing to the continuous nature of similarity in the proposed loss function, these models outperform existing methods for 0-shot transfer across multiple models, datasets and modalities. Particularly, we consider the modality pairs of image-text and speech-text and our models achieve 5-8% (absolute) improvement over previous state-of-the-art methods in 0-shot image classification and 20-30% (absolute) improvement in 0-shot speech-to-intent classification and keyword classification.
PDF Accepted to Neural Information Processing Systems (NeurIPS) 2023 conference
点此查看论文截图
Pre-training-free Image Manipulation Localization through Non-Mutually Exclusive Contrastive Learning
Authors:Jizhe Zhou, Xiaochen Ma, Xia Du, Ahmed Y. Alhammadi, Wentao Feng
Deep Image Manipulation Localization (IML) models suffer from training data insufficiency and thus heavily rely on pre-training. We argue that contrastive learning is more suitable to tackle the data insufficiency problem for IML. Crafting mutually exclusive positives and negatives is the prerequisite for contrastive learning. However, when adopting contrastive learning in IML, we encounter three categories of image patches: tampered, authentic, and contour patches. Tampered and authentic patches are naturally mutually exclusive, but contour patches containing both tampered and authentic pixels are non-mutually exclusive to them. Simply abnegating these contour patches results in a drastic performance loss since contour patches are decisive to the learning outcomes. Hence, we propose the Non-mutually exclusive Contrastive Learning (NCL) framework to rescue conventional contrastive learning from the above dilemma. In NCL, to cope with the non-mutually exclusivity, we first establish a pivot structure with dual branches to constantly switch the role of contour patches between positives and negatives while training. Then, we devise a pivot-consistent loss to avoid spatial corruption caused by the role-switching process. In this manner, NCL both inherits the self-supervised merits to address the data insufficiency and retains a high manipulation localization accuracy. Extensive experiments verify that our NCL achieves state-of-the-art performance on all five benchmarks without any pre-training and is more robust on unseen real-life samples. The code is available at: https://github.com/Knightzjz/NCL-IML.
PDF Tech report. ICCV2023 paper