检测/分割/跟踪


2023-09-28 更新

Co-Salient Object Detection with Semantic-Level Consensus Extraction and Dispersion

Authors:Peiran Xu, Yadong Mu

Given a group of images, co-salient object detection (CoSOD) aims to highlight the common salient object in each image. There are two factors closely related to the success of this task, namely consensus extraction, and the dispersion of consensus to each image. Most previous works represent the group consensus using local features, while we instead utilize a hierarchical Transformer module for extracting semantic-level consensus. Therefore, it can obtain a more comprehensive representation of the common object category, and exclude interference from other objects that share local similarities with the target object. In addition, we propose a Transformer-based dispersion module that takes into account the variation of the co-salient object in different scenes. It distributes the consensus to the image feature maps in an image-specific way while making full use of interactions within the group. These two modules are integrated with a ViT encoder and an FPN-like decoder to form an end-to-end trainable network, without additional branch and auxiliary loss. The proposed method is evaluated on three commonly used CoSOD datasets and achieves state-of-the-art performance.
PDF Accepted by ACM MM 2023

点此查看论文截图

Spatially Guiding Unsupervised Semantic Segmentation Through Depth-Informed Feature Distillation and Sampling

Authors:Leon Sick, Dominik Engel, Pedro Hermosilla, Timo Ropinski

Traditionally, training neural networks to perform semantic segmentation required expensive human-made annotations. But more recently, advances in the field of unsupervised learning have made significant progress on this issue and towards closing the gap to supervised algorithms. To achieve this, semantic knowledge is distilled by learning to correlate randomly sampled features from images across an entire dataset. In this work, we build upon these advances by incorporating information about the structure of the scene into the training process through the use of depth information. We achieve this by (1) learning depth-feature correlation by spatially correlate the feature maps with the depth maps to induce knowledge about the structure of the scene and (2) implementing farthest-point sampling to more effectively select relevant features by utilizing 3D sampling techniques on depth information of the scene. Finally, we demonstrate the effectiveness of our technical contributions through extensive experimentation and present significant improvements in performance across multiple benchmark datasets.
PDF

点此查看论文截图

Triple-View Knowledge Distillation for Semi-Supervised Semantic Segmentation

Authors:Ping Li, Junjie Chen, Li Yuan, Xianghua Xu, Mingli Song

To alleviate the expensive human labeling, semi-supervised semantic segmentation employs a few labeled images and an abundant of unlabeled images to predict the pixel-level label map with the same size. Previous methods often adopt co-training using two convolutional networks with the same architecture but different initialization, which fails to capture the sufficiently diverse features. This motivates us to use tri-training and develop the triple-view encoder to utilize the encoders with different architectures to derive diverse features, and exploit the knowledge distillation skill to learn the complementary semantics among these encoders. Moreover, existing methods simply concatenate the features from both encoder and decoder, resulting in redundant features that require large memory cost. This inspires us to devise a dual-frequency decoder that selects those important features by projecting the features from the spatial domain to the frequency domain, where the dual-frequency channel attention mechanism is introduced to model the feature importance. Therefore, we propose a Triple-view Knowledge Distillation framework, termed TriKD, for semi-supervised semantic segmentation, including the triple-view encoder and the dual-frequency decoder. Extensive experiments were conducted on two benchmarks, \ie, Pascal VOC 2012 and Cityscapes, whose results verify the superiority of the proposed method with a good tradeoff between precision and inference speed.
PDF

点此查看论文截图

Background Activation Suppression for Weakly Supervised Object Localization and Semantic Segmentation

Authors:Wei Zhai, Pingyu Wu, Kai Zhu, Yang Cao, Feng Wu, Zheng-Jun Zha

Weakly supervised object localization and semantic segmentation aim to localize objects using only image-level labels. Recently, a new paradigm has emerged by generating a foreground prediction map (FPM) to achieve pixel-level localization. While existing FPM-based methods use cross-entropy to evaluate the foreground prediction map and to guide the learning of the generator, this paper presents two astonishing experimental observations on the object localization learning process: For a trained network, as the foreground mask expands, 1) the cross-entropy converges to zero when the foreground mask covers only part of the object region. 2) The activation value continuously increases until the foreground mask expands to the object boundary. Therefore, to achieve a more effective localization performance, we argue for the usage of activation value to learn more object regions. In this paper, we propose a Background Activation Suppression (BAS) method. Specifically, an Activation Map Constraint (AMC) module is designed to facilitate the learning of generator by suppressing the background activation value. Meanwhile, by using foreground region guidance and area constraint, BAS can learn the whole region of the object. In the inference phase, we consider the prediction maps of different categories together to obtain the final localization results. Extensive experiments show that BAS achieves significant and consistent improvement over the baseline methods on the CUB-200-2011 and ILSVRC datasets. In addition, our method also achieves state-of-the-art weakly supervised semantic segmentation performance on the PASCAL VOC 2012 and MS COCO 2014 datasets. Code and models are available at https://github.com/wpy1999/BAS-Extension.
PDF Accepted by IJCV. arXiv admin note: text overlap with arXiv:2112.00580

点此查看论文截图

MosaicFusion: Diffusion Models as Data Augmenters for Large Vocabulary Instance Segmentation

Authors:Jiahao Xie, Wei Li, Xiangtai Li, Ziwei Liu, Yew Soon Ong, Chen Change Loy

We present MosaicFusion, a simple yet effective diffusion-based data augmentation approach for large vocabulary instance segmentation. Our method is training-free and does not rely on any label supervision. Two key designs enable us to employ an off-the-shelf text-to-image diffusion model as a useful dataset generator for object instances and mask annotations. First, we divide an image canvas into several regions and perform a single round of diffusion process to generate multiple instances simultaneously, conditioning on different text prompts. Second, we obtain corresponding instance masks by aggregating cross-attention maps associated with object prompts across layers and diffusion time steps, followed by simple thresholding and edge-aware refinement processing. Without bells and whistles, our MosaicFusion can produce a significant amount of synthetic labeled data for both rare and novel categories. Experimental results on the challenging LVIS long-tailed and open-vocabulary benchmarks demonstrate that MosaicFusion can significantly improve the performance of existing instance segmentation models, especially for rare and novel categories. Code will be released at https://github.com/Jiahao000/MosaicFusion.
PDF GitHub: https://github.com/Jiahao000/MosaicFusion

点此查看论文截图

Bridging Semantic Gaps for Language-Supervised Semantic Segmentation

Authors:Yun Xing, Jian Kang, Aoran Xiao, Jiahao Nie, Shao Ling, Shijian Lu

Vision-Language Pre-training has demonstrated its remarkable zero-shot recognition ability and potential to learn generalizable visual representations from language supervision. Taking a step ahead, language-supervised semantic segmentation enables spatial localization of textual inputs by learning pixel grouping solely from image-text pairs. Nevertheless, the state-of-the-art suffers from clear semantic gaps between visual and textual modality: plenty of visual concepts appeared in images are missing in their paired captions. Such semantic misalignment circulates in pre-training, leading to inferior zero-shot performance in dense predictions due to insufficient visual concepts captured in textual representations. To close such semantic gap, we propose Concept Curation (CoCu), a pipeline that leverages CLIP to compensate for the missing semantics. For each image-text pair, we establish a concept archive that maintains potential visually-matched concepts with our proposed vision-driven expansion and text-to-vision-guided ranking. Relevant concepts can thus be identified via cluster-guided sampling and fed into pre-training, thereby bridging the gap between visual and textual semantics. Extensive experiments over a broad suite of 8 segmentation benchmarks show that CoCu achieves superb zero-shot transfer performance and greatly boosts language-supervised segmentation baseline by a large margin, suggesting the value of bridging semantic gap in pre-training data.
PDF NeurIPS 2023 poster. Code will be available at https://github.com/xing0047/CoCu

点此查看论文截图

Semi-Supervised Domain Generalization for Object Detection via Language-Guided Feature Alignment

Authors:Sina Malakouti, Adriana Kovashka

Existing domain adaptation (DA) and generalization (DG) methods in object detection enforce feature alignment in the visual space but face challenges like object appearance variability and scene complexity, which make it difficult to distinguish between objects and achieve accurate detection. In this paper, we are the first to address the problem of semi-supervised domain generalization by exploring vision-language pre-training and enforcing feature alignment through the language space. We employ a novel Cross-Domain Descriptive Multi-Scale Learning (CDDMSL) aiming to maximize the agreement between descriptions of an image presented with different domain-specific characteristics in the embedding space. CDDMSL significantly outperforms existing methods, achieving 11.7% and 7.5% improvement in DG and DA settings, respectively. Comprehensive analysis and ablation studies confirm the effectiveness of our method, positioning CDDMSL as a promising approach for domain generalization in object detection tasks.
PDF Accepted at BMVC 2023

点此查看论文截图

Weakly Supervised Semantic Segmentation by Knowledge Graph Inference

Authors:Jia Zhang, Bo Peng, Xi Wu

Currently, existing efforts in Weakly Supervised Semantic Segmentation (WSSS) based on Convolutional Neural Networks (CNNs) have predominantly focused on enhancing the multi-label classification network stage, with limited attention given to the equally important downstream segmentation network. Furthermore, CNN-based local convolutions lack the ability to model the extensive inter-category dependencies. Therefore, this paper introduces a graph reasoning-based approach to enhance WSSS. The aim is to improve WSSS holistically by simultaneously enhancing both the multi-label classification and segmentation network stages. In the multi-label classification network segment, external knowledge is integrated, coupled with GCNs, to globally reason about inter-class dependencies. This encourages the network to uncover features in non-salient regions of images, thereby refining the completeness of generated pseudo-labels. In the segmentation network segment, the proposed Graph Reasoning Mapping (GRM) module is employed to leverage knowledge obtained from textual databases, facilitating contextual reasoning for class representation within image regions. This GRM module enhances feature representation in high-level semantics of the segmentation network’s local convolutions, while dynamically learning semantic coherence for individual samples. Using solely image-level supervision, we have achieved state-of-the-art performance in WSSS on the PASCAL VOC 2012 and MS-COCO datasets. Extensive experimentation on both the multi-label classification and segmentation network stages underscores the effectiveness of the proposed graph reasoning approach for advancing WSSS.
PDF

点此查看论文截图

CLIP-DIY: CLIP Dense Inference Yields Open-Vocabulary Semantic Segmentation For-Free

Authors:Monika Wysoczańska, Michaël Ramamonjisoa, Tomasz Trzciński, Oriane Siméoni

The emergence of CLIP has opened the way for open-world image perception. The zero-shot classification capabilities of the model are impressive but are harder to use for dense tasks such as image segmentation. Several methods have proposed different modifications and learning schemes to produce dense output. Instead, we propose in this work an open-vocabulary semantic segmentation method, dubbed CLIP-DIY, which does not require any additional training or annotations, but instead leverages existing unsupervised object localization approaches. In particular, CLIP-DIY is a multi-scale approach that directly exploits CLIP classification abilities on patches of different sizes and aggregates the decision in a single map. We further guide the segmentation using foreground/background scores obtained using unsupervised object localization methods. With our method, we obtain state-of-the-art zero-shot semantic segmentation results on PASCAL VOC and perform on par with the best methods on COCO.
PDF

点此查看论文截图

Dataset Diffusion: Diffusion-based Synthetic Dataset Generation for Pixel-Level Semantic Segmentation

Authors:Quang Nguyen, Truong Vu, Anh Tran, Khoi Nguyen

Preparing training data for deep vision models is a labor-intensive task. To address this, generative models have emerged as an effective solution for generating synthetic data. While current generative models produce image-level category labels, we propose a novel method for generating pixel-level semantic segmentation labels using the text-to-image generative model Stable Diffusion (SD). By utilizing the text prompts, cross-attention, and self-attention of SD, we introduce three new techniques: class-prompt appending, class-prompt cross-attention, and self-attention exponentiation. These techniques enable us to generate segmentation maps corresponding to synthetic images. These maps serve as pseudo-labels for training semantic segmenters, eliminating the need for labor-intensive pixel-wise annotation. To account for the imperfections in our pseudo-labels, we incorporate uncertainty regions into the segmentation, allowing us to disregard loss from those regions. We conduct evaluations on two datasets, PASCAL VOC and MSCOCO, and our approach significantly outperforms concurrent work. Our benchmarks and code will be released at https://github.com/VinAIResearch/Dataset-Diffusion
PDF Accepted to NeurIPS 2023

点此查看论文截图

DistillBEV: Boosting Multi-Camera 3D Object Detection with Cross-Modal Knowledge Distillation

Authors:Zeyu Wang, Dingwen Li, Chenxu Luo, Cihang Xie, Xiaodong Yang

3D perception based on the representations learned from multi-camera bird’s-eye-view (BEV) is trending as cameras are cost-effective for mass production in autonomous driving industry. However, there exists a distinct performance gap between multi-camera BEV and LiDAR based 3D object detection. One key reason is that LiDAR captures accurate depth and other geometry measurements, while it is notoriously challenging to infer such 3D information from merely image input. In this work, we propose to boost the representation learning of a multi-camera BEV based student detector by training it to imitate the features of a well-trained LiDAR based teacher detector. We propose effective balancing strategy to enforce the student to focus on learning the crucial features from the teacher, and generalize knowledge transfer to multi-scale layers with temporal fusion. We conduct extensive evaluations on multiple representative models of multi-camera BEV. Experiments reveal that our approach renders significant improvement over the student models, leading to the state-of-the-art performance on the popular benchmark nuScenes.
PDF ICCV 2023

点此查看论文截图

Seeing Beyond the Patch: Scale-Adaptive Semantic Segmentation of High-resolution Remote Sensing Imagery based on Reinforcement Learning

Authors:Yinhe Liu, Sunan Shi, Junjue Wang, Yanfei Zhong

In remote sensing imagery analysis, patch-based methods have limitations in capturing information beyond the sliding window. This shortcoming poses a significant challenge in processing complex and variable geo-objects, which results in semantic inconsistency in segmentation results. To address this challenge, we propose a dynamic scale perception framework, named GeoAgent, which adaptively captures appropriate scale context information outside the image patch based on the different geo-objects. In GeoAgent, each image patch’s states are represented by a global thumbnail and a location mask. The global thumbnail provides context beyond the patch, and the location mask guides the perceived spatial relationships. The scale-selection actions are performed through a Scale Control Agent (SCA). A feature indexing module is proposed to enhance the ability of the agent to distinguish the current image patch’s location. The action switches the patch scale and context branch of a dual-branch segmentation network that extracts and fuses the features of multi-scale patches. The GeoAgent adjusts the network parameters to perform the appropriate scale-selection action based on the reward received for the selected scale. The experimental results, using two publicly available datasets and our newly constructed dataset WUSU, demonstrate that GeoAgent outperforms previous segmentation methods, particularly for large-scale mapping applications.
PDF

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录