2023-09-28 更新
Make the U in UDA Matter: Invariant Consistency Learning for Unsupervised Domain Adaptation
Authors:Zhongqi Yue, Hanwang Zhang, Qianru Sun
Domain Adaptation (DA) is always challenged by the spurious correlation between domain-invariant features (e.g., class identity) and domain-specific features (e.g., environment) that does not generalize to the target domain. Unfortunately, even enriched with additional unsupervised target domains, existing Unsupervised DA (UDA) methods still suffer from it. This is because the source domain supervision only considers the target domain samples as auxiliary data (e.g., by pseudo-labeling), yet the inherent distribution in the target domain — where the valuable de-correlation clues hide — is disregarded. We propose to make the U in UDA matter by giving equal status to the two domains. Specifically, we learn an invariant classifier whose prediction is simultaneously consistent with the labels in the source domain and clusters in the target domain, hence the spurious correlation inconsistent in the target domain is removed. We dub our approach “Invariant CONsistency learning” (ICON). Extensive experiments show that ICON achieves the state-of-the-art performance on the classic UDA benchmarks: Office-Home and VisDA-2017, and outperforms all the conventional methods on the challenging WILDS 2.0 benchmark. Codes are in https://github.com/yue-zhongqi/ICON.
PDF Accepted by NeurIPS 2023
点此查看论文截图
Domain Adaptation for Arabic Machine Translation: The Case of Financial Texts
Authors:Emad A. Alghamdi, Jezia Zakraoui, Fares A. Abanmy
Neural machine translation (NMT) has shown impressive performance when trained on large-scale corpora. However, generic NMT systems have demonstrated poor performance on out-of-domain translation. To mitigate this issue, several domain adaptation methods have recently been proposed which often lead to better translation quality than genetic NMT systems. While there has been some continuous progress in NMT for English and other European languages, domain adaption in Arabic has received little attention in the literature. The current study, therefore, aims to explore the effectiveness of domain-specific adaptation for Arabic MT (AMT), in yet unexplored domain, financial news articles. To this end, we developed carefully a parallel corpus for Arabic-English (AR- EN) translation in the financial domain for benchmarking different domain adaptation methods. We then fine-tuned several pre-trained NMT and Large Language models including ChatGPT-3.5 Turbo on our dataset. The results showed that the fine-tuning is successful using just a few well-aligned in-domain AR-EN segments. The quality of ChatGPT translation was superior than other models based on automatic and human evaluations. To the best of our knowledge, this is the first work on fine-tuning ChatGPT towards financial domain transfer learning. To contribute to research in domain translation, we made our datasets and fine-tuned models available at https://huggingface.co/asas-ai/.
PDF
点此查看论文截图
Dual-Reference Source-Free Active Domain Adaptation for Nasopharyngeal Carcinoma Tumor Segmentation across Multiple Hospitals
Authors:Hongqiu Wang, Jian Chen, Shichen Zhang, Yuan He, Jinfeng Xu, Mengwan Wu, Jinlan He, Wenjun Liao, Xiangde Luo
Nasopharyngeal carcinoma (NPC) is a prevalent and clinically significant malignancy that predominantly impacts the head and neck area. Precise delineation of the Gross Tumor Volume (GTV) plays a pivotal role in ensuring effective radiotherapy for NPC. Despite recent methods that have achieved promising results on GTV segmentation, they are still limited by lacking carefully-annotated data and hard-to-access data from multiple hospitals in clinical practice. Although some unsupervised domain adaptation (UDA) has been proposed to alleviate this problem, unconditionally mapping the distribution distorts the underlying structural information, leading to inferior performance. To address this challenge, we devise a novel Sourece-Free Active Domain Adaptation (SFADA) framework to facilitate domain adaptation for the GTV segmentation task. Specifically, we design a dual reference strategy to select domain-invariant and domain-specific representative samples from a specific target domain for annotation and model fine-tuning without relying on source-domain data. Our approach not only ensures data privacy but also reduces the workload for oncologists as it just requires annotating a few representative samples from the target domain and does not need to access the source data. We collect a large-scale clinical dataset comprising 1057 NPC patients from five hospitals to validate our approach. Experimental results show that our method outperforms the UDA methods and achieves comparable results to the fully supervised upper bound, even with few annotations, highlighting the significant medical utility of our approach. In addition, there is no public dataset about multi-center NPC segmentation, we will release code and dataset for future research.
PDF
点此查看论文截图
LiDAR-UDA: Self-ensembling Through Time for Unsupervised LiDAR Domain Adaptation
Authors:Amirreza Shaban, JoonHo Lee, Sanghun Jung, Xiangyun Meng, Byron Boots
We introduce LiDAR-UDA, a novel two-stage self-training-based Unsupervised Domain Adaptation (UDA) method for LiDAR segmentation. Existing self-training methods use a model trained on labeled source data to generate pseudo labels for target data and refine the predictions via fine-tuning the network on the pseudo labels. These methods suffer from domain shifts caused by different LiDAR sensor configurations in the source and target domains. We propose two techniques to reduce sensor discrepancy and improve pseudo label quality: 1) LiDAR beam subsampling, which simulates different LiDAR scanning patterns by randomly dropping beams; 2) cross-frame ensembling, which exploits temporal consistency of consecutive frames to generate more reliable pseudo labels. Our method is simple, generalizable, and does not incur any extra inference cost. We evaluate our method on several public LiDAR datasets and show that it outperforms the state-of-the-art methods by more than $3.9\%$ mIoU on average for all scenarios. Code will be available at https://github.com/JHLee0513/LiDARUDA.
PDF Accepted ICCV 2023 (Oral)
点此查看论文截图
Towards Real-World Test-Time Adaptation: Tri-Net Self-Training with Balanced Normalization
Authors:Yongyi Su, Xun Xu, Kui Jia
Test-Time Adaptation aims to adapt source domain model to testing data at inference stage with success demonstrated in adapting to unseen corruptions. However, these attempts may fail under more challenging real-world scenarios. Existing works mainly consider real-world test-time adaptation under non-i.i.d. data stream and continual domain shift. In this work, we first complement the existing real-world TTA protocol with a globally class imbalanced testing set. We demonstrate that combining all settings together poses new challenges to existing methods. We argue the failure of state-of-the-art methods is first caused by indiscriminately adapting normalization layers to imbalanced testing data. To remedy this shortcoming, we propose a balanced batchnorm layer to swap out the regular batchnorm at inference stage. The new batchnorm layer is capable of adapting without biasing towards majority classes. We are further inspired by the success of self-training~(ST) in learning from unlabeled data and adapt ST for test-time adaptation. However, ST alone is prone to over adaption which is responsible for the poor performance under continual domain shift. Hence, we propose to improve self-training under continual domain shift by regularizing model updates with an anchored loss. The final TTA model, termed as TRIBE, is built upon a tri-net architecture with balanced batchnorm layers. We evaluate TRIBE on four datasets representing real-world TTA settings. TRIBE consistently achieves the state-of-the-art performance across multiple evaluation protocols. The code is available at \url{https://github.com/Gorilla-Lab-SCUT/TRIBE}.
PDF 23 pages, 7 figures and 22 tables
点此查看论文截图
Multi-Source Domain Adaptation for Object Detection with Prototype-based Mean-teacher
Authors:Atif Belal, Akhil Meethal, Francisco Perdigon Romero, Marco Pedersoli, Eric Granger
Adapting visual object detectors to operational target domains is a challenging task, commonly achieved using unsupervised domain adaptation (UDA) methods. When the labeled dataset is coming from multiple source domains, treating them as separate domains and performing a multi-source domain adaptation (MSDA) improves the accuracy and robustness over mixing these source domains and performing a UDA, as observed by recent studies in MSDA. Existing MSDA methods learn domain invariant and domain-specific parameters (for each source domain) for the adaptation. However, unlike single-source UDA methods, learning domain-specific parameters makes them grow significantly proportional to the number of source domains used. This paper proposes a novel MSDA method called Prototype-based Mean-Teacher (PMT), which uses class prototypes instead of domain-specific subnets to preserve domain-specific information. These prototypes are learned using a contrastive loss, aligning the same categories across domains and separating different categories far apart. Because of the use of prototypes, the parameter size of our method does not increase significantly with the number of source domains, thus reducing memory issues and possible overfitting. Empirical studies show PMT outperforms state-of-the-art MSDA methods on several challenging object detection datasets.
PDF
点此查看论文截图
STANCE-C3: Domain-adaptive Cross-target Stance Detection via Contrastive Learning and Counterfactual Generation
Authors:Nayoung Kim, David Mosallanezhad, Lu Cheng, Michelle V. Mancenido, Huan Liu
Stance detection is the process of inferring a person’s position or standpoint on a specific issue to deduce prevailing perceptions toward topics of general or controversial interest, such as health policies during the COVID-19 pandemic. Existing models for stance detection are trained to perform well for a single domain (e.g., COVID-19) and a specific target topic (e.g., masking protocols), but are generally ineffectual in other domains or targets due to distributional shifts in the data. However, constructing high-performing, domain-specific stance detection models requires an extensive corpus of labeled data relevant to the targeted domain, yet such datasets are not readily available. This poses a challenge as the process of annotating data is costly and time-consuming. To address these challenges, we introduce a novel stance detection model coined domain-adaptive Cross-target STANCE detection via Contrastive learning and Counterfactual generation (STANCE-C3) that uses counterfactual data augmentation to enhance domain-adaptive training by enriching the target domain dataset during the training process and requiring significantly less information from the new domain. We also propose a modified self-supervised contrastive learning as a component of STANCE-C3 to prevent overfitting for the existing domain and target and enable cross-target stance detection. Through experiments on various datasets, we show that STANCE-C3 shows performance improvement over existing state-of-the-art methods.
PDF
点此查看论文截图
Balancing Computational Efficiency and Forecast Error in Machine Learning-based Time-Series Forecasting: Insights from Live Experiments on Meteorological Nowcasting
Authors:Elin Törnquist, Wagner Costa Santos, Timothy Pogue, Nicholas Wingle, Robert A. Caulk
Machine learning for time-series forecasting remains a key area of research. Despite successful application of many machine learning techniques, relating computational efficiency to forecast error remains an under-explored domain. This paper addresses this topic through a series of real-time experiments to quantify the relationship between computational cost and forecast error using meteorological nowcasting as an example use-case. We employ a variety of popular regression techniques (XGBoost, FC-MLP, Transformer, and LSTM) for multi-horizon, short-term forecasting of three variables (temperature, wind speed, and cloud cover) for multiple locations. During a 5-day live experiment, 4000 data sources were streamed for training and inferencing 144 models per hour. These models were parameterized to explore forecast error for two computational cost minimization methods: a novel auto-adaptive data reduction technique (Variance Horizon) and a performance-based concept drift-detection mechanism. Forecast error of all model variations were benchmarked in real-time against a state-of-the-art numerical weather prediction model. Performance was assessed using classical and novel evaluation metrics. Results indicate that using the Variance Horizon reduced computational usage by more than 50\%, while increasing between 0-15\% in error. Meanwhile, performance-based retraining reduced computational usage by up to 90\% while \emph{also} improving forecast error by up to 10\%. Finally, the combination of both the Variance Horizon and performance-based retraining outperformed other model configurations by up to 99.7\% when considering error normalized to computational usage.
PDF 26 pages
点此查看论文截图
BASED: Bundle-Adjusting Surgical Endoscopic Dynamic Video Reconstruction using Neural Radiance Fields
Authors:Shreya Saha, Sainan Liu, Shan Lin, Jingpei Lu, Michael Yip
Reconstruction of deformable scenes from endoscopic videos is important for many applications such as intraoperative navigation, surgical visual perception, and robotic surgery. It is a foundational requirement for realizing autonomous robotic interventions for minimally invasive surgery. However, previous approaches in this domain have been limited by their modular nature and are confined to specific camera and scene settings. Our work adopts the Neural Radiance Fields (NeRF) approach to learning 3D implicit representations of scenes that are both dynamic and deformable over time, and furthermore with unknown camera poses. We demonstrate this approach on endoscopic surgical scenes from robotic surgery. This work removes the constraints of known camera poses and overcomes the drawbacks of the state-of-the-art unstructured dynamic scene reconstruction technique, which relies on the static part of the scene for accurate reconstruction. Through several experimental datasets, we demonstrate the versatility of our proposed model to adapt to diverse camera and scene settings, and show its promise for both current and future robotic surgical systems.
PDF
点此查看论文截图
Uncertainty Quantification via Neural Posterior Principal Components
Authors:Elias Nehme, Omer Yair, Tomer Michaeli
Uncertainty quantification is crucial for the deployment of image restoration models in safety-critical domains, like autonomous driving and biological imaging. To date, methods for uncertainty visualization have mainly focused on per-pixel estimates. However, a heatmap of per-pixel variances is typically of little practical use, as it does not capture the strong correlations between pixels. A more natural measure of uncertainty corresponds to the variances along the principal components (PCs) of the posterior distribution. Theoretically, the PCs can be computed by applying PCA on samples generated from a conditional generative model for the input image. However, this requires generating a very large number of samples at test time, which is painfully slow with the current state-of-the-art (diffusion) models. In this work, we present a method for predicting the PCs of the posterior distribution for any input image, in a single forward pass of a neural network. Our method can either wrap around a pre-trained model that was trained to minimize the mean square error (MSE), or can be trained from scratch to output both a predicted image and the posterior PCs. We showcase our method on multiple inverse problems in imaging, including denoising, inpainting, super-resolution, and biological image-to-image translation. Our method reliably conveys instance-adaptive uncertainty directions, achieving uncertainty quantification comparable with posterior samplers while being orders of magnitude faster. Examples are available at https://eliasnehme.github.io/NPPC/
PDF Accepted to NeurIPS 2023, webpage at https://eliasnehme.github.io/NPPC/
点此查看论文截图
Learning from SAM: Harnessing a Segmentation Foundation Model for Sim2Real Domain Adaptation through Regularization
Authors:Mayara E. Bonani, Max Schwarz, Sven Behnke
Domain adaptation is especially important for robotics applications, where target domain training data is usually scarce and annotations are costly to obtain. We present a method for self-supervised domain adaptation for the scenario where annotated source domain data (e.g. from synthetic generation) is available, but the target domain data is completely unannotated. Our method targets the semantic segmentation task and leverages a segmentation foundation model (Segment Anything Model) to obtain segment information on unannotated data. We take inspiration from recent advances in unsupervised local feature learning and propose an invariance-variance loss structure over the detected segments for regularizing feature representations in the target domain. Crucially, this loss structure and network architecture can handle overlapping segments and oversegmentation as produced by Segment Anything. We demonstrate the advantage of our method on the challenging YCB-Video and HomebrewedDB datasets and show that it outperforms prior work and, on YCB-Video, even a network trained with real annotations.
PDF
点此查看论文截图
Confidence-based Visual Dispersal for Few-shot Unsupervised Domain Adaptation
Authors:Yizhe Xiong, Hui Chen, Zijia Lin, Sicheng Zhao, Guiguang Ding
Unsupervised domain adaptation aims to transfer knowledge from a fully-labeled source domain to an unlabeled target domain. However, in real-world scenarios, providing abundant labeled data even in the source domain can be infeasible due to the difficulty and high expense of annotation. To address this issue, recent works consider the Few-shot Unsupervised Domain Adaptation (FUDA) where only a few source samples are labeled, and conduct knowledge transfer via self-supervised learning methods. Yet existing methods generally overlook that the sparse label setting hinders learning reliable source knowledge for transfer. Additionally, the learning difficulty difference in target samples is different but ignored, leaving hard target samples poorly classified. To tackle both deficiencies, in this paper, we propose a novel Confidence-based Visual Dispersal Transfer learning method (C-VisDiT) for FUDA. Specifically, C-VisDiT consists of a cross-domain visual dispersal strategy that transfers only high-confidence source knowledge for model adaptation and an intra-domain visual dispersal strategy that guides the learning of hard target samples with easy ones. We conduct extensive experiments on Office-31, Office-Home, VisDA-C, and DomainNet benchmark datasets and the results demonstrate that the proposed C-VisDiT significantly outperforms state-of-the-art FUDA methods. Our code is available at https://github.com/Bostoncake/C-VisDiT.
PDF Accepted as ICCV 2023 poster
点此查看论文截图
Leveraging Topology for Domain Adaptive Road Segmentation in Satellite and Aerial Imagery
Authors:Javed Iqbal, Aliza Masood, Waqas Sultani, Mohsen Ali
Getting precise aspects of road through segmentation from remote sensing imagery is useful for many real-world applications such as autonomous vehicles, urban development and planning, and achieving sustainable development goals. Roads are only a small part of the image, and their appearance, type, width, elevation, directions, etc. exhibit large variations across geographical areas. Furthermore, due to differences in urbanization styles, planning, and the natural environments; regions along the roads vary significantly. Due to these variations among the train and test domains, the road segmentation algorithms fail to generalize to new geographical locations. Unlike the generic domain alignment scenarios, road segmentation has no scene structure, and generic domain adaptation methods are unable to enforce topological properties like continuity, connectivity, smoothness, etc., thus resulting in degraded domain alignment. In this work, we propose a topology-aware unsupervised domain adaptation approach for road segmentation in remote sensing imagery. Specifically, we predict road skeleton, an auxiliary task to impose the topological constraints. To enforce consistent predictions of road and skeleton, especially in the unlabeled target domain, the conformity loss is defined across the skeleton prediction head and the road-segmentation head. Furthermore, for self-training, we filter out the noisy pseudo-labels by using a connectivity-based pseudo-labels refinement strategy, on both road and skeleton segmentation heads, thus avoiding holes and discontinuities. Extensive experiments on the benchmark datasets show the effectiveness of the proposed approach compared to existing state-of-the-art methods. Specifically, for SpaceNet to DeepGlobe adaptation, the proposed approach outperforms the competing methods by a minimum margin of 6.6%, 6.7%, and 9.8% in IoU, F1-score, and APLS, respectively.
PDF
点此查看论文截图
Experience and Evidence are the eyes of an excellent summarizer! Towards Knowledge Infused Multi-modal Clinical Conversation Summarization
Authors:Abhisek Tiwari, Anisha Saha, Sriparna Saha, Pushpak Bhattacharyya, Minakshi Dhar
With the advancement of telemedicine, both researchers and medical practitioners are working hand-in-hand to develop various techniques to automate various medical operations, such as diagnosis report generation. In this paper, we first present a multi-modal clinical conversation summary generation task that takes a clinician-patient interaction (both textual and visual information) and generates a succinct synopsis of the conversation. We propose a knowledge-infused, multi-modal, multi-tasking medical domain identification and clinical conversation summary generation (MM-CliConSummation) framework. It leverages an adapter to infuse knowledge and visual features and unify the fused feature vector using a gated mechanism. Furthermore, we developed a multi-modal, multi-intent clinical conversation summarization corpus annotated with intent, symptom, and summary. The extensive set of experiments, both quantitatively and qualitatively, led to the following findings: (a) critical significance of visuals, (b) more precise and medical entity preserving summary with additional knowledge infusion, and (c) a correlation between medical department identification and clinical synopsis generation. Furthermore, the dataset and source code are available at https://github.com/NLP-RL/MM-CliConSummation.
PDF
点此查看论文截图
One For All: Video Conversation is Feasible Without Video Instruction Tuning
Authors:Ruyang Liu, Chen Li, Yixiao Ge, Ying Shan, Thomas H. Li, Ge Li
The recent progress in Large Language Models (LLM) has spurred various advancements in image-language conversation agents, while how to build a proficient video-based dialogue system is still under exploration. Considering the extensive scale of LLM and visual backbone, minimal GPU memory is left for facilitating effective temporal modeling, which is crucial for comprehending and providing feedback on videos. To this end, we propose Branching Temporal Adapter (BT-Adapter), a novel method for extending image-language pretrained models into the video domain. Specifically, BT-Adapter serves as a plug-and-use temporal modeling branch alongside the pretrained visual encoder, which is tuned while keeping the backbone frozen. Just pretrained once, BT-Adapter can be seamlessly integrated into all image conversation models using this version of CLIP, enabling video conversations without the need for video instructions. Besides, we develop a unique asymmetric token masking strategy inside the branch with tailor-made training tasks for BT-Adapter, facilitating faster convergence and better results. Thanks to BT-Adapter, we are able to empower existing multimodal dialogue models with strong video understanding capabilities without incurring excessive GPU costs. Without bells and whistles, BT-Adapter achieves (1) state-of-the-art zero-shot results on various video tasks using thousands of fewer GPU hours. (2) better performance than current video chatbots without any video instruction tuning. (3) state-of-the-art results of video chatting using video instruction tuning, outperforming previous SOTAs by a large margin.
PDF