2023-09-23 更新
AnomalyGPT: Detecting Industrial Anomalies using Large Vision-Language Models
Authors:Zhaopeng Gu, Bingke Zhu, Guibo Zhu, Yingying Chen, Ming Tang, Jinqiao Wang
Large Vision-Language Models (LVLMs) such as MiniGPT-4 and LLaVA have demonstrated the capability of understanding images and achieved remarkable performance in various visual tasks. Despite their strong abilities in recognizing common objects due to extensive training datasets, they lack specific domain knowledge and have a weaker understanding of localized details within objects, which hinders their effectiveness in the Industrial Anomaly Detection (IAD) task. On the other hand, most existing IAD methods only provide anomaly scores and necessitate the manual setting of thresholds to distinguish between normal and abnormal samples, which restricts their practical implementation. In this paper, we explore the utilization of LVLM to address the IAD problem and propose AnomalyGPT, a novel IAD approach based on LVLM. We generate training data by simulating anomalous images and producing corresponding textual descriptions for each image. We also employ an image decoder to provide fine-grained semantic and design a prompt learner to fine-tune the LVLM using prompt embeddings. Our AnomalyGPT eliminates the need for manual threshold adjustments, thus directly assesses the presence and locations of anomalies. Additionally, AnomalyGPT supports multi-turn dialogues and exhibits impressive few-shot in-context learning capabilities. With only one normal shot, AnomalyGPT achieves the state-of-the-art performance with an accuracy of 86.1%, an image-level AUC of 94.1%, and a pixel-level AUC of 95.3% on the MVTec-AD dataset. Code is available at https://github.com/CASIA-IVA-Lab/AnomalyGPT.
PDF Project page: https://anomalygpt.github.io
点此查看论文截图
Zero-Shot Co-salient Object Detection Framework
Authors:Haoke Xiao, Lv Tang, Bo Li, Zhiming Luo, Shaozi Li
Co-salient Object Detection (CoSOD) endeavors to replicate the human visual system’s capacity to recognize common and salient objects within a collection of images. Despite recent advancements in deep learning models, these models still rely on training with well-annotated CoSOD datasets. The exploration of training-free zero-shot CoSOD frameworks has been limited. In this paper, taking inspiration from the zero-shot transfer capabilities of foundational computer vision models, we introduce the first zero-shot CoSOD framework that harnesses these models without any training process. To achieve this, we introduce two novel components in our proposed framework: the group prompt generation (GPG) module and the co-saliency map generation (CMP) module. We evaluate the framework’s performance on widely-used datasets and observe impressive results. Our approach surpasses existing unsupervised methods and even outperforms fully supervised methods developed before 2020, while remaining competitive with some fully supervised methods developed before 2022.
PDF
点此查看论文截图
Language Models as Black-Box Optimizers for Vision-Language Models
Authors:Samuel Yu, Shihong Liu, Zhiqiu Lin, Deepak Pathak, Deva Ramanan
Vision-language models (VLMs) pre-trained on web-scale datasets have demonstrated remarkable capabilities across a variety of vision and multimodal tasks. Currently, fine-tuning methods for VLMs mainly operate in a white-box setting, requiring access to model parameters for backpropagation. However, many VLMs rely on proprietary data and are not open-source, which restricts the use of white-box approaches for fine-tuning. Given that popular private large language models (LLMs) like ChatGPT still offer a language-based user interface, we aim to develop a novel fine-tuning approach for VLMs through natural language prompts, thereby avoiding the need to access model parameters, feature embeddings, or output logits. In this setup, we propose employing chat-based LLMs as black-box optimizers to search for the best text prompt on the illustrative task of few-shot image classification using CLIP. Specifically, we adopt an automatic “hill-climbing” procedure that converges on an effective prompt by evaluating the accuracy of current prompts and asking LLMs to refine them based on textual feedback, all within a conversational process without human-in-the-loop. In a challenging 1-shot learning setup, our simple approach surpasses the white-box continuous prompting method CoOp by an average of 1.5% across 11 datasets including ImageNet. Our approach also outperforms OpenAI’s manually crafted prompts and is more efficient than other black-box methods like iterative APE. Additionally, we highlight the advantage of conversational feedback incorporating both positive and negative prompts, suggesting that LLMs can utilize the implicit “gradient” direction in textual feedback for a more efficient search. Lastly, we find that the text prompts generated through our strategy are not only more interpretable but also transfer well across different CLIP architectures in a black-box manner.
PDF
点此查看论文截图
MMICL: Empowering Vision-language Model with Multi-Modal In-Context Learning
Authors:Haozhe Zhao, Zefan Cai, Shuzheng Si, Xiaojian Ma, Kaikai An, Liang Chen, Zixuan Liu, Sheng Wang, Wenjuan Han, Baobao Chang
Starting from the resurgence of deep learning, vision-language models (VLMs) benefiting from large language models (LLMs) have never been so popular. However, while LLMs can utilize extensive background knowledge and task information with in-context learning, most VLMs still struggle with understanding complex multi-modal prompts with multiple images. The issue can traced back to the architectural design of VLMs or pre-training data. Specifically, the current VLMs primarily emphasize utilizing multi-modal data with a single image some, rather than multi-modal prompts with interleaved multiple images and text. Even though some newly proposed VLMs could handle user prompts with multiple images, pre-training data does not provide more sophisticated multi-modal prompts than interleaved image and text crawled from the web. We propose MMICL to address the issue by considering both the model and data perspectives. We introduce a well-designed architecture capable of seamlessly integrating visual and textual context in an interleaved manner and MIC dataset to reduce the gap between the training data and the complex user prompts in real-world applications, including: 1) multi-modal context with interleaved images and text, 2) textual references for each image, and 3) multi-image data with spatial, logical, or temporal relationships. Our experiments confirm that MMICL achieves new stat-of-the-art zero-shot and few-shot performance on a wide range of general vision-language tasks, especially for complex reasoning benchmarks including MME and MMBench. Our analysis demonstrates that MMICL effectively deals with the challenge of complex multi-modal prompt understanding. The experiments on ScienceQA-IMG also show that MMICL successfully alleviates the issue of language bias in VLMs, which we believe is the reason behind the advanced performance of MMICL.
PDF Code, dataset, checkpoints, and demos are available at \href{https://github.com/HaozheZhao/MIC}{https://github.com/HaozheZhao/MIC}
点此查看论文截图
Forgedit: Text Guided Image Editing via Learning and Forgetting
Authors:Shiwen Zhang, Shuai Xiao, Weilin Huang
Text guided image editing on real images given only the image and the target text prompt as inputs, is a very general and challenging problem, which requires the editing model to reason by itself which part of the image should be edited, to preserve the characteristics of original image, and also to perform complicated non-rigid editing. Previous fine-tuning based solutions are time-consuming and vulnerable to overfitting, limiting their editing capabilities. To tackle these issues, we design a novel text guided image editing method, Forgedit. First, we propose a novel fine-tuning framework which learns to reconstruct the given image in less than one minute by vision language joint learning. Then we introduce vector subtraction and vector projection to explore the proper text embedding for editing. We also find a general property of UNet structures in Diffusion Models and inspired by such a finding, we design forgetting strategies to diminish the fatal overfitting issues and significantly boost the editing abilities of Diffusion Models. Our method, Forgedit, implemented with Stable Diffusion, achieves new state-of-the-art results on the challenging text guided image editing benchmark TEdBench, surpassing the previous SOTA method Imagic with Imagen, in terms of both CLIP score and LPIPS score. Codes are available at https://github.com/witcherofresearch/Forgedit.
PDF Codes are available at https://github.com/witcherofresearch/Forgedit
点此查看论文截图
ZS6D: Zero-shot 6D Object Pose Estimation using Vision Transformers
Authors:Philipp Ausserlechner, David Haberger, Stefan Thalhammer, Jean-Baptiste Weibel, Markus Vincze
As robotic systems increasingly encounter complex and unconstrained real-world scenarios, there is a demand to recognize diverse objects. The state-of-the-art 6D object pose estimation methods rely on object-specific training and therefore do not generalize to unseen objects. Recent novel object pose estimation methods are solving this issue using task-specific fine-tuned CNNs for deep template matching. This adaptation for pose estimation still requires expensive data rendering and training procedures. MegaPose for example is trained on a dataset consisting of two million images showing 20,000 different objects to reach such generalization capabilities. To overcome this shortcoming we introduce ZS6D, for zero-shot novel object 6D pose estimation. Visual descriptors, extracted using pre-trained Vision Transformers (ViT), are used for matching rendered templates against query images of objects and for establishing local correspondences. These local correspondences enable deriving geometric correspondences and are used for estimating the object’s 6D pose with RANSAC-based PnP. This approach showcases that the image descriptors extracted by pre-trained ViTs are well-suited to achieve a notable improvement over two state-of-the-art novel object 6D pose estimation methods, without the need for task-specific fine-tuning. Experiments are performed on LMO, YCBV, and TLESS. In comparison to one of the two methods we improve the Average Recall on all three datasets and compared to the second method we improve on two datasets.
PDF
点此查看论文截图
TinyCLIP: CLIP Distillation via Affinity Mimicking and Weight Inheritance
Authors:Kan Wu, Houwen Peng, Zhenghong Zhou, Bin Xiao, Mengchen Liu, Lu Yuan, Hong Xuan, Michael Valenzuela, Xi, Chen, Xinggang Wang, Hongyang Chao, Han Hu
In this paper, we propose a novel cross-modal distillation method, called TinyCLIP, for large-scale language-image pre-trained models. The method introduces two core techniques: affinity mimicking and weight inheritance. Affinity mimicking explores the interaction between modalities during distillation, enabling student models to mimic teachers’ behavior of learning cross-modal feature alignment in a visual-linguistic affinity space. Weight inheritance transmits the pre-trained weights from the teacher models to their student counterparts to improve distillation efficiency. Moreover, we extend the method into a multi-stage progressive distillation to mitigate the loss of informative weights during extreme compression. Comprehensive experiments demonstrate the efficacy of TinyCLIP, showing that it can reduce the size of the pre-trained CLIP ViT-B/32 by 50%, while maintaining comparable zero-shot performance. While aiming for comparable performance, distillation with weight inheritance can speed up the training by 1.4 - 7.8 $\times$ compared to training from scratch. Moreover, our TinyCLIP ViT-8M/16, trained on YFCC-15M, achieves an impressive zero-shot top-1 accuracy of 41.1% on ImageNet, surpassing the original CLIP ViT-B/16 by 3.5% while utilizing only 8.9% parameters. Finally, we demonstrate the good transferability of TinyCLIP in various downstream tasks. Code and models will be open-sourced at https://aka.ms/tinyclip.
PDF Accepted By ICCV 2023