2023-09-12 更新
Single-Channel Speech Enhancement with Deep Complex U-Networks and Probabilistic Latent Space Models
Authors:Eike J. Nustede, Jörn Anemüller
In this paper, we propose to extend the deep, complex U-Network architecture for speech enhancement by incorporating a probabilistic (i.e., variational) latent space model. The proposed model is evaluated against several ablated versions of itself in order to study the effects of the variational latent space model, complex-value processing, and self-attention. Evaluation on the MS-DNS 2020 and Voicebank+Demand datasets yields consistently high performance. E.g., the proposed model achieves an SI-SDR of up to 20.2 dB, about 0.5 to 1.4 dB higher than its ablated version without probabilistic latent space, 2-2.4 dB higher than WaveUNet, and 6.7 dB above PHASEN. Compared to real-valued magnitude spectrogram processing with a variational U-Net, the complex U-Net achieves an improvement of up to 4.5 dB SI-SDR. Complex spectrum encoding as magnitude and phase yields best performance in anechoic conditions whereas real and imaginary part representation results in better generalization to (novel) reverberation conditions, possibly due to the underlying physics of sound.
PDF
点此查看论文截图
A Comparative Analysis of Pretrained Language Models for Text-to-Speech
Authors:Marcel Granero-Moya, Penny Karanasou, Sri Karlapati, Bastian Schnell, Nicole Peinelt, Alexis Moinet, Thomas Drugman
State-of-the-art text-to-speech (TTS) systems have utilized pretrained language models (PLMs) to enhance prosody and create more natural-sounding speech. However, while PLMs have been extensively researched for natural language understanding (NLU), their impact on TTS has been overlooked. In this study, we aim to address this gap by conducting a comparative analysis of different PLMs for two TTS tasks: prosody prediction and pause prediction. Firstly, we trained a prosody prediction model using 15 different PLMs. Our findings revealed a logarithmic relationship between model size and quality, as well as significant performance differences between neutral and expressive prosody. Secondly, we employed PLMs for pause prediction and found that the task was less sensitive to small models. We also identified a strong correlation between our empirical results and the GLUE scores obtained for these language models. To the best of our knowledge, this is the first study of its kind to investigate the impact of different PLMs on TTS.
PDF Accepted for presentation at the 12th ISCA Speech Synthesis Workshop (SSW) in Grenoble, France, from 26th to 28th August 2023
点此查看论文截图
Leveraging Label Information for Multimodal Emotion Recognition
Authors:Peiying Wang, Sunlu Zeng, Junqing Chen, Lu Fan, Meng Chen, Youzheng Wu, Xiaodong He
Multimodal emotion recognition (MER) aims to detect the emotional status of a given expression by combining the speech and text information. Intuitively, label information should be capable of helping the model locate the salient tokens/frames relevant to the specific emotion, which finally facilitates the MER task. Inspired by this, we propose a novel approach for MER by leveraging label information. Specifically, we first obtain the representative label embeddings for both text and speech modalities, then learn the label-enhanced text/speech representations for each utterance via label-token and label-frame interactions. Finally, we devise a novel label-guided attentive fusion module to fuse the label-aware text and speech representations for emotion classification. Extensive experiments were conducted on the public IEMOCAP dataset, and experimental results demonstrate that our proposed approach outperforms existing baselines and achieves new state-of-the-art performance.
PDF Accepted by Interspeech 2023
点此查看论文截图
Bring the Noise: Introducing Noise Robustness to Pretrained Automatic Speech Recognition
Authors:Patrick Eickhoff, Matthias Möller, Theresa Pekarek Rosin, Johannes Twiefel, Stefan Wermter
In recent research, in the domain of speech processing, large End-to-End (E2E) systems for Automatic Speech Recognition (ASR) have reported state-of-the-art performance on various benchmarks. These systems intrinsically learn how to handle and remove noise conditions from speech. Previous research has shown, that it is possible to extract the denoising capabilities of these models into a preprocessor network, which can be used as a frontend for downstream ASR models. However, the proposed methods were limited to specific fully convolutional architectures. In this work, we propose a novel method to extract the denoising capabilities, that can be applied to any encoder-decoder architecture. We propose the Cleancoder preprocessor architecture that extracts hidden activations from the Conformer ASR model and feeds them to a decoder to predict denoised spectrograms. We train our pre-processor on the Noisy Speech Database (NSD) to reconstruct denoised spectrograms from noisy inputs. Then, we evaluate our model as a frontend to a pretrained Conformer ASR model as well as a frontend to train smaller Conformer ASR models from scratch. We show that the Cleancoder is able to filter noise from speech and that it improves the total Word Error Rate (WER) of the downstream model in noisy conditions for both applications.
PDF Submitted and accepted for ICANN 2023 (32nd International Conference on Artificial Neural Networks)
点此查看论文截图
PromptTTS 2: Describing and Generating Voices with Text Prompt
Authors:Yichong Leng, Zhifang Guo, Kai Shen, Xu Tan, Zeqian Ju, Yanqing Liu, Yufei Liu, Dongchao Yang, Leying Zhang, Kaitao Song, Lei He, Xiang-Yang Li, Sheng Zhao, Tao Qin, Jiang Bian
Speech conveys more information than just text, as the same word can be uttered in various voices to convey diverse information. Compared to traditional text-to-speech (TTS) methods relying on speech prompts (reference speech) for voice variability, using text prompts (descriptions) is more user-friendly since speech prompts can be hard to find or may not exist at all. TTS approaches based on the text prompt face two challenges: 1) the one-to-many problem, where not all details about voice variability can be described in the text prompt, and 2) the limited availability of text prompt datasets, where vendors and large cost of data labeling are required to write text prompt for speech. In this work, we introduce PromptTTS 2 to address these challenges with a variation network to provide variability information of voice not captured by text prompts, and a prompt generation pipeline to utilize the large language models (LLM) to compose high quality text prompts. Specifically, the variation network predicts the representation extracted from the reference speech (which contains full information about voice) based on the text prompt representation. For the prompt generation pipeline, it generates text prompts for speech with a speech understanding model to recognize voice attributes (e.g., gender, speed) from speech and a large language model to formulate text prompt based on the recognition results. Experiments on a large-scale (44K hours) speech dataset demonstrate that compared to the previous works, PromptTTS 2 generates voices more consistent with text prompts and supports the sampling of diverse voice variability, thereby offering users more choices on voice generation. Additionally, the prompt generation pipeline produces high-quality prompts, eliminating the large labeling cost. The demo page of PromptTTS 2 is available online\footnote{https://speechresearch.github.io/prompttts2}.
PDF Demo page: https://speechresearch.github.io/prompttts2
点此查看论文截图
Personalized Adaptation with Pre-trained Speech Encoders for Continuous Emotion Recognition
Authors:Minh Tran, Yufeng Yin, Mohammad Soleymani
There are individual differences in expressive behaviors driven by cultural norms and personality. This between-person variation can result in reduced emotion recognition performance. Therefore, personalization is an important step in improving the generalization and robustness of speech emotion recognition. In this paper, to achieve unsupervised personalized emotion recognition, we first pre-train an encoder with learnable speaker embeddings in a self-supervised manner to learn robust speech representations conditioned on speakers. Second, we propose an unsupervised method to compensate for the label distribution shifts by finding similar speakers and leveraging their label distributions from the training set. Extensive experimental results on the MSP-Podcast corpus indicate that our method consistently outperforms strong personalization baselines and achieves state-of-the-art performance for valence estimation.
PDF Accepted by INTERSPEECH 2023
点此查看论文截图
Employing Real Training Data for Deep Noise Suppression
Authors:Ziyi Xu, Marvin Sach, Jan Pirklbauer, Tim Fingscheidt
Most deep noise suppression (DNS) models are trained with reference-based losses requiring access to clean speech. However, sometimes an additive microphone model is insufficient for real-world applications. Accordingly, ways to use real training data in supervised learning for DNS models promise to reduce a potential training/inference mismatch. Employing real data for DNS training requires either generative approaches or a reference-free loss without access to the corresponding clean speech. In this work, we propose to employ an end-to-end non-intrusive deep neural network (DNN), named PESQ-DNN, to estimate perceptual evaluation of speech quality (PESQ) scores of enhanced real data. It provides a reference-free perceptual loss for employing real data during DNS training, maximizing the PESQ scores. Furthermore, we use an epoch-wise alternating training protocol, updating the DNS model on real data, followed by PESQ-DNN updating on synthetic data. The DNS model trained with the PESQ-DNN employing real data outperforms all reference methods employing only synthetic training data. On synthetic test data, our proposed method excels the Interspeech 2021 DNS Challenge baseline by a significant 0.32 PESQ points. Both on synthetic and real test data, the proposed method beats the baseline by 0.05 DNSMOS points - although PESQ-DNN optimizes for a different perceptual metric.
PDF
点此查看论文截图
GRASS: Unified Generation Model for Speech-to-Semantic Tasks
Authors:Aobo Xia, Shuyu Lei, Yushu Yang, Xiang Guo, Hua Chai
This paper explores the instruction fine-tuning technique for speech-to-semantic tasks by introducing a unified end-to-end (E2E) framework that generates target text conditioned on a task-related prompt for audio data. We pre-train the model using large and diverse data, where instruction-speech pairs are constructed via a text-to-speech (TTS) system. Extensive experiments demonstrate that our proposed model achieves state-of-the-art (SOTA) results on many benchmarks covering speech named entity recognition, speech sentiment analysis, speech question answering, and more, after fine-tuning. Furthermore, the proposed model achieves competitive performance in zero-shot and few-shot scenarios. To facilitate future work on instruction fine-tuning for speech-to-semantic tasks, we release our instruction dataset and code.
PDF
点此查看论文截图
RoDia: A New Dataset for Romanian Dialect Identification from Speech
Authors:Codrut Rotaru, Nicolae-Catalin Ristea, Radu Tudor Ionescu
Dialect identification is a critical task in speech processing and language technology, enhancing various applications such as speech recognition, speaker verification, and many others. While most research studies have been dedicated to dialect identification in widely spoken languages, limited attention has been given to dialect identification in low-resource languages, such as Romanian. To address this research gap, we introduce RoDia, the first dataset for Romanian dialect identification from speech. The RoDia dataset includes a varied compilation of speech samples from five distinct regions of Romania, covering both urban and rural environments, totaling 2 hours of manually annotated speech data. Along with our dataset, we introduce a set of competitive models to be used as baselines for future research. The top scoring model achieves a macro F1 score of 59.83% and a micro F1 score of 62.08%, indicating that the task is challenging. We thus believe that RoDia is a valuable resource that will stimulate research aiming to address the challenges of Romanian dialect identification. We publicly release our dataset and code at https://github.com/codrut2/RoDia.
PDF
点此查看论文截图
LanSER: Language-Model Supported Speech Emotion Recognition
Authors:Taesik Gong, Josh Belanich, Krishna Somandepalli, Arsha Nagrani, Brian Eoff, Brendan Jou
Speech emotion recognition (SER) models typically rely on costly human-labeled data for training, making scaling methods to large speech datasets and nuanced emotion taxonomies difficult. We present LanSER, a method that enables the use of unlabeled data by inferring weak emotion labels via pre-trained large language models through weakly-supervised learning. For inferring weak labels constrained to a taxonomy, we use a textual entailment approach that selects an emotion label with the highest entailment score for a speech transcript extracted via automatic speech recognition. Our experimental results show that models pre-trained on large datasets with this weak supervision outperform other baseline models on standard SER datasets when fine-tuned, and show improved label efficiency. Despite being pre-trained on labels derived only from text, we show that the resulting representations appear to model the prosodic content of speech.
PDF Presented at INTERSPEECH 2023
点此查看论文截图
Active Learning for Classifying 2D Grid-Based Level Completability
Authors:Mahsa Bazzaz, Seth Cooper
Determining the completability of levels generated by procedural generators such as machine learning models can be challenging, as it can involve the use of solver agents that often require a significant amount of time to analyze and solve levels. Active learning is not yet widely adopted in game evaluations, although it has been used successfully in natural language processing, image and speech recognition, and computer vision, where the availability of labeled data is limited or expensive. In this paper, we propose the use of active learning for learning level completability classification. Through an active learning approach, we train deep-learning models to classify the completability of generated levels for Super Mario Bros., Kid Icarus, and a Zelda-like game. We compare active learning for querying levels to label with completability against random queries. Our results show using an active learning approach to label levels results in better classifier performance with the same amount of labeled data.
PDF 4 pages, 3 figures
点此查看论文截图
End-to-End Speech Recognition and Disfluency Removal with Acoustic Language Model Pretraining
Authors:Saksham Bassi, Giulio Duregon, Siddhartha Jalagam, David Roth
The SOTA in transcription of disfluent and conversational speech has in recent years favored two-stage models, with separate transcription and cleaning stages. We believe that previous attempts at end-to-end disfluency removal have fallen short because of the representational advantage that large-scale language model pretraining has given to lexical models. Until recently, the high dimensionality and limited availability of large audio datasets inhibited the development of large-scale self-supervised pretraining objectives for learning effective audio representations, giving a relative advantage to the two-stage approach, which utilises pretrained representations for lexical tokens. In light of recent successes in large scale audio pretraining, we revisit the performance comparison between two-stage and end-to-end model and find that audio based language models pretrained using weak self-supervised objectives match or exceed the performance of similarly trained two-stage models, and further, that the choice of pretraining objective substantially effects a model’s ability to be adapted to the disfluency removal task.
PDF
点此查看论文截图
Speech2Lip: High-fidelity Speech to Lip Generation by Learning from a Short Video
Authors:Xiuzhe Wu, Pengfei Hu, Yang Wu, Xiaoyang Lyu, Yan-Pei Cao, Ying Shan, Wenming Yang, Zhongqian Sun, Xiaojuan Qi
Synthesizing realistic videos according to a given speech is still an open challenge. Previous works have been plagued by issues such as inaccurate lip shape generation and poor image quality. The key reason is that only motions and appearances on limited facial areas (e.g., lip area) are mainly driven by the input speech. Therefore, directly learning a mapping function from speech to the entire head image is prone to ambiguity, particularly when using a short video for training. We thus propose a decomposition-synthesis-composition framework named Speech to Lip (Speech2Lip) that disentangles speech-sensitive and speech-insensitive motion/appearance to facilitate effective learning from limited training data, resulting in the generation of natural-looking videos. First, given a fixed head pose (i.e., canonical space), we present a speech-driven implicit model for lip image generation which concentrates on learning speech-sensitive motion and appearance. Next, to model the major speech-insensitive motion (i.e., head movement), we introduce a geometry-aware mutual explicit mapping (GAMEM) module that establishes geometric mappings between different head poses. This allows us to paste generated lip images at the canonical space onto head images with arbitrary poses and synthesize talking videos with natural head movements. In addition, a Blend-Net and a contrastive sync loss are introduced to enhance the overall synthesis performance. Quantitative and qualitative results on three benchmarks demonstrate that our model can be trained by a video of just a few minutes in length and achieve state-of-the-art performance in both visual quality and speech-visual synchronization. Code: https://github.com/CVMI-Lab/Speech2Lip.
PDF
点此查看论文截图
Leveraging Large Language Models for Exploiting ASR Uncertainty
Authors:Pranay Dighe, Yi Su, Shangshang Zheng, Yunshu Liu, Vineet Garg, Xiaochuan Niu, Ahmed Tewfik
While large language models excel in a variety of natural language processing (NLP) tasks, to perform well on spoken language understanding (SLU) tasks, they must either rely on off-the-shelf automatic speech recognition (ASR) systems for transcription, or be equipped with an in-built speech modality. This work focuses on the former scenario, where LLM’s accuracy on SLU tasks is constrained by the accuracy of a fixed ASR system on the spoken input. Specifically, we tackle speech-intent classification task, where a high word-error-rate can limit the LLM’s ability to understand the spoken intent. Instead of chasing a high accuracy by designing complex or specialized architectures regardless of deployment costs, we seek to answer how far we can go without substantially changing the underlying ASR and LLM, which can potentially be shared by multiple unrelated tasks. To this end, we propose prompting the LLM with an n-best list of ASR hypotheses instead of only the error-prone 1-best hypothesis. We explore prompt-engineering to explain the concept of n-best lists to the LLM; followed by the finetuning of Low-Rank Adapters on the downstream tasks. Our approach using n-best lists proves to be effective on a device-directed speech detection task as well as on a keyword spotting task, where systems using n-best list prompts outperform those using 1-best ASR hypothesis; thus paving the way for an efficient method to exploit ASR uncertainty via LLMs for speech-based applications.
PDF
点此查看论文截图
Speech Emotion Recognition with Distilled Prosodic and Linguistic Affect Representations
Authors:Debaditya Shome, Ali Etemad
We propose EmoDistill, a novel speech emotion recognition (SER) framework that leverages cross-modal knowledge distillation during training to learn strong linguistic and prosodic representations of emotion from speech. During inference, our method only uses a stream of speech signals to perform unimodal SER thus reducing computation overhead and avoiding run-time transcription and prosodic feature extraction errors. During training, our method distills information at both embedding and logit levels from a pair of pre-trained Prosodic and Linguistic teachers that are fine-tuned for SER. Experiments on the IEMOCAP benchmark demonstrate that our method outperforms other unimodal and multimodal techniques by a considerable margin, and achieves state-of-the-art performance of 77.49% unweighted accuracy and 78.91% weighted accuracy. Detailed ablation studies demonstrate the impact of each component of our method.
PDF Under review
点此查看论文截图
Multi-Modal Automatic Prosody Annotation with Contrastive Pretraining of SSWP
Authors:Jinzuomu Zhong, Yang Li, Hui Huang, Jie Liu, Zhiba Su, Jing Guo, Benlai Tang, Fengjie Zhu
In the realm of expressive Text-to-Speech (TTS), explicit prosodic boundaries significantly advance the naturalness and controllability of synthesized speech. While human prosody annotation contributes a lot to the performance, it is a labor-intensive and time-consuming process, often resulting in inconsistent outcomes. Despite the availability of extensive supervised data, the current benchmark model still faces performance setbacks. To address this issue, a two-stage automatic annotation pipeline is novelly proposed in this paper. Specifically, in the first stage, we propose contrastive text-speech pretraining of Speech-Silence and Word-Punctuation (SSWP) pairs. The pretraining procedure hammers at enhancing the prosodic space extracted from joint text-speech space. In the second stage, we build a multi-modal prosody annotator, which consists of pretrained encoders, a straightforward yet effective text-speech feature fusion scheme, and a sequence classifier. Extensive experiments conclusively demonstrate that our proposed method excels at automatically generating prosody annotation and achieves state-of-the-art (SOTA) performance. Furthermore, our novel model has exhibited remarkable resilience when tested with varying amounts of data.
PDF Submitted to ICASSP 2024