2023-09-03 更新
When hard negative sampling meets supervised contrastive learning
Authors:Zijun Long, George Killick, Richard McCreadie, Gerardo Aragon Camarasa, Zaiqiao Meng
State-of-the-art image models predominantly follow a two-stage strategy: pre-training on large datasets and fine-tuning with cross-entropy loss. Many studies have shown that using cross-entropy can result in sub-optimal generalisation and stability. While the supervised contrastive loss addresses some limitations of cross-entropy loss by focusing on intra-class similarities and inter-class differences, it neglects the importance of hard negative mining. We propose that models will benefit from performance improvement by weighting negative samples based on their dissimilarity to positive counterparts. In this paper, we introduce a new supervised contrastive learning objective, SCHaNe, which incorporates hard negative sampling during the fine-tuning phase. Without requiring specialized architectures, additional data, or extra computational resources, experimental results indicate that SCHaNe outperforms the strong baseline BEiT-3 in Top-1 accuracy across various benchmarks, with significant gains of up to $3.32\%$ in few-shot learning settings and $3.41\%$ in full dataset fine-tuning. Importantly, our proposed objective sets a new state-of-the-art for base models on ImageNet-1k, achieving an 86.14\% accuracy. Furthermore, we demonstrate that the proposed objective yields better embeddings and explains the improved effectiveness observed in our experiments.
PDF
点此查看论文截图
Multimodal Contrastive Learning and Tabular Attention for Automated Alzheimer’s Disease Prediction
Authors:Weichen Huang
Alongside neuroimaging such as MRI scans and PET, Alzheimer’s disease (AD) datasets contain valuable tabular data including AD biomarkers and clinical assessments. Existing computer vision approaches struggle to utilize this additional information. To address these needs, we propose a generalizable framework for multimodal contrastive learning of image data and tabular data, a novel tabular attention module for amplifying and ranking salient features in tables, and the application of these techniques onto Alzheimer’s disease prediction. Experimental evaulations demonstrate the strength of our framework by detecting Alzheimer’s disease (AD) from over 882 MR image slices from the ADNI database. We take advantage of the high interpretability of tabular data and our novel tabular attention approach and through attribution of the attention scores for each row of the table, we note and rank the most predominant features. Results show that the model is capable of an accuracy of over 83.8%, almost a 10% increase from previous state of the art.
PDF