检测/分割/跟踪


2023-09-03 更新

Compositional Semantic Mix for Domain Adaptation in Point Cloud Segmentation

Authors:Cristiano Saltori, Fabio Galasso, Giuseppe Fiameni, Nicu Sebe, Fabio Poiesi, Elisa Ricci

Deep-learning models for 3D point cloud semantic segmentation exhibit limited generalization capabilities when trained and tested on data captured with different sensors or in varying environments due to domain shift. Domain adaptation methods can be employed to mitigate this domain shift, for instance, by simulating sensor noise, developing domain-agnostic generators, or training point cloud completion networks. Often, these methods are tailored for range view maps or necessitate multi-modal input. In contrast, domain adaptation in the image domain can be executed through sample mixing, which emphasizes input data manipulation rather than employing distinct adaptation modules. In this study, we introduce compositional semantic mixing for point cloud domain adaptation, representing the first unsupervised domain adaptation technique for point cloud segmentation based on semantic and geometric sample mixing. We present a two-branch symmetric network architecture capable of concurrently processing point clouds from a source domain (e.g. synthetic) and point clouds from a target domain (e.g. real-world). Each branch operates within one domain by integrating selected data fragments from the other domain and utilizing semantic information derived from source labels and target (pseudo) labels. Additionally, our method can leverage a limited number of human point-level annotations (semi-supervised) to further enhance performance. We assess our approach in both synthetic-to-real and real-to-real scenarios using LiDAR datasets and demonstrate that it significantly outperforms state-of-the-art methods in both unsupervised and semi-supervised settings.
PDF TPAMI. arXiv admin note: text overlap with arXiv:2207.09778

点此查看论文截图

Few-Shot Object Detection via Synthetic Features with Optimal Transport

Authors:Anh-Khoa Nguyen Vu, Thanh-Toan Do, Vinh-Tiep Nguyen, Tam Le, Minh-Triet Tran, Tam V. Nguyen

Few-shot object detection aims to simultaneously localize and classify the objects in an image with limited training samples. However, most existing few-shot object detection methods focus on extracting the features of a few samples of novel classes that lack diversity. Hence, they may not be sufficient to capture the data distribution. To address that limitation, in this paper, we propose a novel approach in which we train a generator to generate synthetic data for novel classes. Still, directly training a generator on the novel class is not effective due to the lack of novel data. To overcome that issue, we leverage the large-scale dataset of base classes. Our overarching goal is to train a generator that captures the data variations of the base dataset. We then transform the captured variations into novel classes by generating synthetic data with the trained generator. To encourage the generator to capture data variations on base classes, we propose to train the generator with an optimal transport loss that minimizes the optimal transport distance between the distributions of real and synthetic data. Extensive experiments on two benchmark datasets demonstrate that the proposed method outperforms the state of the art. Source code will be available.
PDF

点此查看论文截图

Detect, Augment, Compose, and Adapt: Four Steps for Unsupervised Domain Adaptation in Object Detection

Authors:Mohamed L. Mekhalfi, Davide Boscaini, Fabio Poiesi

Unsupervised domain adaptation (UDA) plays a crucial role in object detection when adapting a source-trained detector to a target domain without annotated data. In this paper, we propose a novel and effective four-step UDA approach that leverages self-supervision and trains source and target data concurrently. We harness self-supervised learning to mitigate the lack of ground truth in the target domain. Our method consists of the following steps: (1) identify the region with the highest-confidence set of detections in each target image, which serve as our pseudo-labels; (2) crop the identified region and generate a collection of its augmented versions; (3) combine these latter into a composite image; (4) adapt the network to the target domain using the composed image. Through extensive experiments under cross-camera, cross-weather, and synthetic-to-real scenarios, our approach achieves state-of-the-art performance, improving upon the nearest competitor by more than 2% in terms of mean Average Precision (mAP). The code is available at https://github.com/MohamedTEV/DACA.
PDF

点此查看论文截图

On the Robustness of Object Detection Models in Aerial Images

Authors:Haodong He, Jian Ding, Gui-Song Xia

The robustness of object detection models is a major concern when applied to real-world scenarios. However, the performance of most object detection models degrades when applied to images subjected to corruptions, since they are usually trained and evaluated on clean datasets. Enhancing the robustness of object detection models is of utmost importance, especially for those designed for aerial images, which feature complex backgrounds, substantial variations in scales and orientations of objects. This paper addresses the challenge of assessing the robustness of object detection models in aerial images, with a specific emphasis on scenarios where images are affected by clouds. In this study, we introduce two novel benchmarks based on DOTA-v1.0. The first benchmark encompasses 19 prevalent corruptions, while the second focuses on cloud-corrupted images-a phenomenon uncommon in natural pictures yet frequent in aerial photography. We systematically evaluate the robustness of mainstream object detection models and perform numerous ablation experiments. Through our investigations, we find that enhanced model architectures, larger networks, well-crafted modules, and judicious data augmentation strategies collectively enhance the robustness of aerial object detection models. The benchmarks we propose and our comprehensive experimental analyses can facilitate research on robust object detection in aerial images. Codes and datasets are available at: (https://github.com/hehaodong530/DOTA-C)
PDF 16 pages

点此查看论文截图

BTSeg: Barlow Twins Regularization for Domain Adaptation in Semantic Segmentation

Authors:Johannes Künzel, Anna Hilsmann, Peter Eisert

Semantic image segmentation is a critical component in many computer vision systems, such as autonomous driving. In such applications, adverse conditions (heavy rain, night time, snow, extreme lighting) on the one hand pose specific challenges, yet are typically underrepresented in the available datasets. Generating more training data is cumbersome and expensive, and the process itself is error-prone due to the inherent aleatoric uncertainty. To address this challenging problem, we propose BTSeg, which exploits image-level correspondences as weak supervision signal to learn a segmentation model that is agnostic to adverse conditions. To this end, our approach uses the Barlow twins loss from the field of unsupervised learning and treats images taken at the same location but under different adverse conditions as “augmentations” of the same unknown underlying base image. This allows the training of a segmentation model that is robust to appearance changes introduced by different adverse conditions. We evaluate our approach on ACDC and the new challenging ACG benchmark to demonstrate its robustness and generalization capabilities. Our approach performs favorably when compared to the current state-of-the-art methods, while also being simpler to implement and train. The code will be released upon acceptance.
PDF

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录