2023-08-26 更新
Downstream-agnostic Adversarial Examples
Authors:Ziqi Zhou, Shengshan Hu, Ruizhi Zhao, Qian Wang, Leo Yu Zhang, Junhui Hou, Hai Jin
Self-supervised learning usually uses a large amount of unlabeled data to pre-train an encoder which can be used as a general-purpose feature extractor, such that downstream users only need to perform fine-tuning operations to enjoy the benefit of “large model”. Despite this promising prospect, the security of pre-trained encoder has not been thoroughly investigated yet, especially when the pre-trained encoder is publicly available for commercial use. In this paper, we propose AdvEncoder, the first framework for generating downstream-agnostic universal adversarial examples based on the pre-trained encoder. AdvEncoder aims to construct a universal adversarial perturbation or patch for a set of natural images that can fool all the downstream tasks inheriting the victim pre-trained encoder. Unlike traditional adversarial example works, the pre-trained encoder only outputs feature vectors rather than classification labels. Therefore, we first exploit the high frequency component information of the image to guide the generation of adversarial examples. Then we design a generative attack framework to construct adversarial perturbations/patches by learning the distribution of the attack surrogate dataset to improve their attack success rates and transferability. Our results show that an attacker can successfully attack downstream tasks without knowing either the pre-training dataset or the downstream dataset. We also tailor four defenses for pre-trained encoders, the results of which further prove the attack ability of AdvEncoder.
PDF This paper has been accepted by the International Conference on Computer Vision (ICCV ‘23, October 2—6, 2023, Paris, France)
点此查看论文截图
Towards Generic and Controllable Attacks Against Object Detection
Authors:Guopeng Li, Yue Xu, Jian Ding, Gui-Song Xia
Existing adversarial attacks against Object Detectors (ODs) suffer from two inherent limitations. Firstly, ODs have complicated meta-structure designs, hence most advanced attacks for ODs concentrate on attacking specific detector-intrinsic structures, which makes it hard for them to work on other detectors and motivates us to design a generic attack against ODs. Secondly, most works against ODs make Adversarial Examples (AEs) by generalizing image-level attacks from classification to detection, which brings redundant computations and perturbations in semantically meaningless areas (e.g., backgrounds) and leads to an emergency for seeking controllable attacks for ODs. To this end, we propose a generic white-box attack, LGP (local perturbations with adaptively global attacks), to blind mainstream object detectors with controllable perturbations. For a detector-agnostic attack, LGP tracks high-quality proposals and optimizes three heterogeneous losses simultaneously. In this way, we can fool the crucial components of ODs with a part of their outputs without the limitations of specific structures. Regarding controllability, we establish an object-wise constraint that exploits foreground-background separation adaptively to induce the attachment of perturbations to foregrounds. Experimentally, the proposed LGP successfully attacked sixteen state-of-the-art object detectors on MS-COCO and DOTA datasets, with promising imperceptibility and transferability obtained. Codes are publicly released in https://github.com/liguopeng0923/LGP.git
PDF
点此查看论文截图
Set-level Guidance Attack: Boosting Adversarial Transferability of Vision-Language Pre-training Models
Authors:Dong Lu, Zhiqiang Wang, Teng Wang, Weili Guan, Hongchang Gao, Feng Zheng
Vision-language pre-training (VLP) models have shown vulnerability to adversarial examples in multimodal tasks. Furthermore, malicious adversaries can be deliberately transferred to attack other black-box models. However, existing work has mainly focused on investigating white-box attacks. In this paper, we present the first study to investigate the adversarial transferability of recent VLP models. We observe that existing methods exhibit much lower transferability, compared to the strong attack performance in white-box settings. The transferability degradation is partly caused by the under-utilization of cross-modal interactions. Particularly, unlike unimodal learning, VLP models rely heavily on cross-modal interactions and the multimodal alignments are many-to-many, e.g., an image can be described in various natural languages. To this end, we propose a highly transferable Set-level Guidance Attack (SGA) that thoroughly leverages modality interactions and incorporates alignment-preserving augmentation with cross-modal guidance. Experimental results demonstrate that SGA could generate adversarial examples that can strongly transfer across different VLP models on multiple downstream vision-language tasks. On image-text retrieval, SGA significantly enhances the attack success rate for transfer attacks from ALBEF to TCL by a large margin (at least 9.78% and up to 30.21%), compared to the state-of-the-art.
PDF To appear in ICCV 2023
点此查看论文截图
Unified Adversarial Patch for Visible-Infrared Cross-modal Attacks in the Physical World
Authors:Xingxing Wei, Yao Huang, Yitong Sun, Jie Yu
Physical adversarial attacks have put a severe threat to DNN-based object detectors. To enhance security, a combination of visible and infrared sensors is deployed in various scenarios, which has proven effective in disabling existing single-modal physical attacks. To further demonstrate the potential risks in such cases, we design a unified adversarial patch that can perform cross-modal physical attacks, achieving evasion in both modalities simultaneously with a single patch. Given the different imaging mechanisms of visible and infrared sensors, our work manipulates patches’ shape features, which can be captured in different modalities when they undergo changes. To deal with challenges, we propose a novel boundary-limited shape optimization approach that aims to achieve compact and smooth shapes for the adversarial patch, making it easy to implement in the physical world. And a score-aware iterative evaluation method is also introduced to balance the fooling degree between visible and infrared detectors during optimization, which guides the adversarial patch to iteratively reduce the predicted scores of the multi-modal sensors. Furthermore, we propose an Affine-Transformation-based enhancement strategy that makes the learnable shape robust to various angles, thus mitigating the issue of shape deformation caused by different shooting angles in the real world. Our method is evaluated against several state-of-the-art object detectors, achieving an Attack Success Rate (ASR) of over 80%. We also demonstrate the effectiveness of our approach in physical-world scenarios under various settings, including different angles, distances, postures, and scenes for both visible and infrared sensors.
PDF 13 pages, 16 figures. arXiv admin note: substantial text overlap with arXiv:2307.07859
点此查看论文截图
Benchmarking and Analyzing Robust Point Cloud Recognition: Bag of Tricks for Defending Adversarial Examples
Authors:Qiufan Ji, Lin Wang, Cong Shi, Shengshan Hu, Yingying Chen, Lichao Sun
Deep Neural Networks (DNNs) for 3D point cloud recognition are vulnerable to adversarial examples, threatening their practical deployment. Despite the many research endeavors have been made to tackle this issue in recent years, the diversity of adversarial examples on 3D point clouds makes them more challenging to defend against than those on 2D images. For examples, attackers can generate adversarial examples by adding, shifting, or removing points. Consequently, existing defense strategies are hard to counter unseen point cloud adversarial examples. In this paper, we first establish a comprehensive, and rigorous point cloud adversarial robustness benchmark to evaluate adversarial robustness, which can provide a detailed understanding of the effects of the defense and attack methods. We then collect existing defense tricks in point cloud adversarial defenses and then perform extensive and systematic experiments to identify an effective combination of these tricks. Furthermore, we propose a hybrid training augmentation methods that consider various types of point cloud adversarial examples to adversarial training, significantly improving the adversarial robustness. By combining these tricks, we construct a more robust defense framework achieving an average accuracy of 83.45\% against various attacks, demonstrating its capability to enabling robust learners. Our codebase are open-sourced on: \url{https://github.com/qiufan319/benchmark_pc_attack.git}.
PDF 8 pages 6 figures
点此查看论文截图
AdvFAS: A robust face anti-spoofing framework against adversarial examples
Authors:Jiawei Chen, Xiao Yang, Heng Yin, Mingzhi Ma, Bihui Chen, Jianteng Peng, Yandong Guo, Zhaoxia Yin, Hang Su
Ensuring the reliability of face recognition systems against presentation attacks necessitates the deployment of face anti-spoofing techniques. Despite considerable advancements in this domain, the ability of even the most state-of-the-art methods to defend against adversarial examples remains elusive. While several adversarial defense strategies have been proposed, they typically suffer from constrained practicability due to inevitable trade-offs between universality, effectiveness, and efficiency. To overcome these challenges, we thoroughly delve into the coupled relationship between adversarial detection and face anti-spoofing. Based on this, we propose a robust face anti-spoofing framework, namely AdvFAS, that leverages two coupled scores to accurately distinguish between correctly detected and wrongly detected face images. Extensive experiments demonstrate the effectiveness of our framework in a variety of settings, including different attacks, datasets, and backbones, meanwhile enjoying high accuracy on clean examples. Moreover, we successfully apply the proposed method to detect real-world adversarial examples.
PDF
点此查看论文截图
PAIF: Perception-Aware Infrared-Visible Image Fusion for Attack-Tolerant Semantic Segmentation
Authors:Zhu Liu, Jinyuan Liu, Benzhuang Zhang, Long Ma, Xin Fan, Risheng Liu
Infrared and visible image fusion is a powerful technique that combines complementary information from different modalities for downstream semantic perception tasks. Existing learning-based methods show remarkable performance, but are suffering from the inherent vulnerability of adversarial attacks, causing a significant decrease in accuracy. In this work, a perception-aware fusion framework is proposed to promote segmentation robustness in adversarial scenes. We first conduct systematic analyses about the components of image fusion, investigating the correlation with segmentation robustness under adversarial perturbations. Based on these analyses, we propose a harmonized architecture search with a decomposition-based structure to balance standard accuracy and robustness. We also propose an adaptive learning strategy to improve the parameter robustness of image fusion, which can learn effective feature extraction under diverse adversarial perturbations. Thus, the goals of image fusion (\textit{i.e.,} extracting complementary features from source modalities and defending attack) can be realized from the perspectives of architectural and learning strategies. Extensive experimental results demonstrate that our scheme substantially enhances the robustness, with gains of 15.3% mIOU of segmentation in the adversarial scene, compared with advanced competitors. The source codes are available at https://github.com/LiuZhu-CV/PAIF.
PDF Accepted by ACM MM’2023;The source codes are available at https://github.com/LiuZhu-CV/PAIF
点此查看论文截图
Improving Performance of Semi-Supervised Learning by Adversarial Attacks
Authors:Dongyoon Yang, Kunwoong Kim, Yongdai Kim
Semi-supervised learning (SSL) algorithm is a setup built upon a realistic assumption that access to a large amount of labeled data is tough. In this study, we present a generalized framework, named SCAR, standing for Selecting Clean samples with Adversarial Robustness, for improving the performance of recent SSL algorithms. By adversarially attacking pre-trained models with semi-supervision, our framework shows substantial advances in classifying images. We introduce how adversarial attacks successfully select high-confident unlabeled data to be labeled with current predictions. On CIFAR10, three recent SSL algorithms with SCAR result in significantly improved image classification.
PDF 4 pages
点此查看论文截图
Pelta: Shielding Transformers to Mitigate Evasion Attacks in Federated Learning
Authors:Simon Queyrut, Yérom-David Bromberg, Valerio Schiavoni
The main premise of federated learning is that machine learning model updates are computed locally, in particular to preserve user data privacy, as those never leave the perimeter of their device. This mechanism supposes the general model, once aggregated, to be broadcast to collaborating and non malicious nodes. However, without proper defenses, compromised clients can easily probe the model inside their local memory in search of adversarial examples. For instance, considering image-based applications, adversarial examples consist of imperceptibly perturbed images (to the human eye) misclassified by the local model, which can be later presented to a victim node’s counterpart model to replicate the attack. To mitigate such malicious probing, we introduce Pelta, a novel shielding mechanism leveraging trusted hardware. By harnessing the capabilities of Trusted Execution Environments (TEEs), Pelta masks part of the back-propagation chain rule, otherwise typically exploited by attackers for the design of malicious samples. We evaluate Pelta on a state of the art ensemble model and demonstrate its effectiveness against the Self Attention Gradient adversarial Attack.
PDF
点此查看论文截图
Face Encryption via Frequency-Restricted Identity-Agnostic Attacks
Authors:Xin Dong, Rui Wang, Siyuan Liang, Aishan Liu, Lihua Jing
Billions of people are sharing their daily live images on social media everyday. However, malicious collectors use deep face recognition systems to easily steal their biometric information (e.g., faces) from these images. Some studies are being conducted to generate encrypted face photos using adversarial attacks by introducing imperceptible perturbations to reduce face information leakage. However, existing studies need stronger black-box scenario feasibility and more natural visual appearances, which challenge the feasibility of privacy protection. To address these problems, we propose a frequency-restricted identity-agnostic (FRIA) framework to encrypt face images from unauthorized face recognition without access to personal information. As for the weak black-box scenario feasibility, we obverse that representations of the average feature in multiple face recognition models are similar, thus we propose to utilize the average feature via the crawled dataset from the Internet as the target to guide the generation, which is also agnostic to identities of unknown face recognition systems; in nature, the low-frequency perturbations are more visually perceptible by the human vision system. Inspired by this, we restrict the perturbation in the low-frequency facial regions by discrete cosine transform to achieve the visual naturalness guarantee. Extensive experiments on several face recognition models demonstrate that our FRIA outperforms other state-of-the-art methods in generating more natural encrypted faces while attaining high black-box attack success rates of 96%. In addition, we validate the efficacy of FRIA using real-world black-box commercial API, which reveals the potential of FRIA in practice. Our codes can be found in https://github.com/XinDong10/FRIA.
PDF
点此查看论文截图
A White-Box False Positive Adversarial Attack Method on Contrastive Loss-Based Offline Handwritten Signature Verification Models
Authors:Zhongliang Guo, Yifei Qian, Ognjen Arandjelović, Lei Fang
In this paper, we tackle the challenge of white-box false positive adversarial attacks on contrastive loss-based offline handwritten signature verification models. We propose a novel attack method that treats the attack as a style transfer between closely related but distinct writing styles. To guide the generation of deceptive images, we introduce two new loss functions that enhance the attack success rate by perturbing the Euclidean distance between the embedding vectors of the original and synthesized samples, while ensuring minimal perturbations by reducing the difference between the generated image and the original image. Our method demonstrates state-of-the-art performance in white-box attacks on contrastive loss-based offline handwritten signature verification models, as evidenced by our experiments. The key contributions of this paper include a novel false positive attack method, two new loss functions, effective style transfer in handwriting styles, and superior performance in white-box false positive attacks compared to other white-box attack methods.
PDF 8 pages, 3 figures
点此查看论文截图
Improving the Transferability of Adversarial Examples with Arbitrary Style Transfer
Authors:Zhijin Ge, Fanhua Shang, Hongying Liu, Yuanyuan Liu, Liang Wan, Wei Feng, Xiaosen Wang
Deep neural networks are vulnerable to adversarial examples crafted by applying human-imperceptible perturbations on clean inputs. Although many attack methods can achieve high success rates in the white-box setting, they also exhibit weak transferability in the black-box setting. Recently, various methods have been proposed to improve adversarial transferability, in which the input transformation is one of the most effective methods. In this work, we notice that existing input transformation-based works mainly adopt the transformed data in the same domain for augmentation. Inspired by domain generalization, we aim to further improve the transferability using the data augmented from different domains. Specifically, a style transfer network can alter the distribution of low-level visual features in an image while preserving semantic content for humans. Hence, we propose a novel attack method named Style Transfer Method (STM) that utilizes a proposed arbitrary style transfer network to transform the images into different domains. To avoid inconsistent semantic information of stylized images for the classification network, we fine-tune the style transfer network and mix up the generated images added by random noise with the original images to maintain semantic consistency and boost input diversity. Extensive experimental results on the ImageNet-compatible dataset show that our proposed method can significantly improve the adversarial transferability on either normally trained models or adversarially trained models than state-of-the-art input transformation-based attacks. Code is available at: https://github.com/Zhijin-Ge/STM.
PDF 10 pages, 2 figures, accepted by the 31st ACM International Conference on Multimedia (MM ‘23)