Diffusion Models


2023-08-26 更新

DiffCloth: Diffusion Based Garment Synthesis and Manipulation via Structural Cross-modal Semantic Alignment

Authors:Xujie Zhang, Binbin Yang, Michael C. Kampffmeyer, Wenqing Zhang, Shiyue Zhang, Guansong Lu, Liang Lin, Hang Xu, Xiaodan Liang

Cross-modal garment synthesis and manipulation will significantly benefit the way fashion designers generate garments and modify their designs via flexible linguistic interfaces.Current approaches follow the general text-to-image paradigm and mine cross-modal relations via simple cross-attention modules, neglecting the structural correspondence between visual and textual representations in the fashion design domain. In this work, we instead introduce DiffCloth, a diffusion-based pipeline for cross-modal garment synthesis and manipulation, which empowers diffusion models with flexible compositionality in the fashion domain by structurally aligning the cross-modal semantics. Specifically, we formulate the part-level cross-modal alignment as a bipartite matching problem between the linguistic Attribute-Phrases (AP) and the visual garment parts which are obtained via constituency parsing and semantic segmentation, respectively. To mitigate the issue of attribute confusion, we further propose a semantic-bundled cross-attention to preserve the spatial structure similarities between the attention maps of attribute adjectives and part nouns in each AP. Moreover, DiffCloth allows for manipulation of the generated results by simply replacing APs in the text prompts. The manipulation-irrelevant regions are recognized by blended masks obtained from the bundled attention maps of the APs and kept unchanged. Extensive experiments on the CM-Fashion benchmark demonstrate that DiffCloth both yields state-of-the-art garment synthesis results by leveraging the inherent structural information and supports flexible manipulation with region consistency.
PDF accepted by ICCV2023

点此查看论文截图

MatFuse: Controllable Material Generation with Diffusion Models

Authors:Giuseppe Vecchio, Renato Sortino, Simone Palazzo, Concetto Spampinato

Creating high quality and realistic materials in computer graphics is a challenging and time-consuming task, which requires great expertise. In this paper, we present MatFuse, a novel unified approach that harnesses the generative power of diffusion models (DM) to simplify the creation of SVBRDF maps. Our DM-based pipeline integrates multiple sources of conditioning, such as color palettes, sketches, and pictures, enabling fine-grained control and flexibility in material synthesis. This design allows for the combination of diverse information sources (e.g., sketch + image embedding), enhancing creative possibilities in line with the principle of compositionality. We demonstrate the generative capabilities of the proposed method under various conditioning settings; on the SVBRDF estimation task, we show that our method yields performance comparable to state-of-the-art approaches, both qualitatively and quantitatively.
PDF

点此查看论文截图

LongDanceDiff: Long-term Dance Generation with Conditional Diffusion Model

Authors:Siqi Yang, Zejun Yang, Zhisheng Wang

Dancing with music is always an essential human art form to express emotion. Due to the high temporal-spacial complexity, long-term 3D realist dance generation synchronized with music is challenging. Existing methods suffer from the freezing problem when generating long-term dances due to error accumulation and training-inference discrepancy. To address this, we design a conditional diffusion model, LongDanceDiff, for this sequence-to-sequence long-term dance generation, addressing the challenges of temporal coherency and spatial constraint. LongDanceDiff contains a transformer-based diffusion model, where the input is a concatenation of music, past motions, and noised future motions. This partial noising strategy leverages the full-attention mechanism and learns the dependencies among music and past motions. To enhance the diversity of generated dance motions and mitigate the freezing problem, we introduce a mutual information minimization objective that regularizes the dependency between past and future motions. We also address common visual quality issues in dance generation, such as foot sliding and unsmooth motion, by incorporating spatial constraints through a Global-Trajectory Modulation (GTM) layer and motion perceptual losses, thereby improving the smoothness and naturalness of motion generation. Extensive experiments demonstrate a significant improvement in our approach over the existing state-of-the-art methods. We plan to release our codes and models soon.
PDF

点此查看论文截图

High-quality Image Dehazing with Diffusion Model

Authors:Hu Yu, Jie Huang, Kaiwen Zheng, Man Zhou, Feng Zhao

Image dehazing is quite challenging in dense-haze scenarios, where quite less original information remains in the hazy image. Though previous methods have made marvelous progress, they still suffer from information loss in content and color in dense-haze scenarios. The recently emerged Denoising Diffusion Probabilistic Model (DDPM) exhibits strong generation ability, showing potential for solving this problem. However, DDPM fails to consider the physics property of dehazing task, limiting its information completion capacity. In this work, we propose DehazeDDPM: A DDPM-based and physics-aware image dehazing framework that applies to complex hazy scenarios. Specifically, DehazeDDPM works in two stages. The former stage physically models the dehazing task with the Atmospheric Scattering Model (ASM), pulling the distribution closer to the clear data and endowing DehazeDDPM with fog-aware ability. The latter stage exploits the strong generation ability of DDPM to compensate for the haze-induced huge information loss, by working in conjunction with the physical modelling. Extensive experiments demonstrate that our method attains state-of-the-art performance on both synthetic and real-world hazy datasets.
PDF

点此查看论文截图

Diffusion-based Image Translation with Label Guidance for Domain Adaptive Semantic Segmentation

Authors:Duo Peng, Ping Hu, Qiuhong Ke, Jun Liu

Translating images from a source domain to a target domain for learning target models is one of the most common strategies in domain adaptive semantic segmentation (DASS). However, existing methods still struggle to preserve semantically-consistent local details between the original and translated images. In this work, we present an innovative approach that addresses this challenge by using source-domain labels as explicit guidance during image translation. Concretely, we formulate cross-domain image translation as a denoising diffusion process and utilize a novel Semantic Gradient Guidance (SGG) method to constrain the translation process, conditioning it on the pixel-wise source labels. Additionally, a Progressive Translation Learning (PTL) strategy is devised to enable the SGG method to work reliably across domains with large gaps. Extensive experiments demonstrate the superiority of our approach over state-of-the-art methods.
PDF Accepted to ICCV2023

点此查看论文截图

Diffuse, Attend, and Segment: Unsupervised Zero-Shot Segmentation using Stable Diffusion

Authors:Junjiao Tian, Lavisha Aggarwal, Andrea Colaco, Zsolt Kira, Mar Gonzalez-Franco

Producing quality segmentation masks for images is a fundamental problem in computer vision. Recent research has explored large-scale supervised training to enable zero-shot segmentation on virtually any image style and unsupervised training to enable segmentation without dense annotations. However, constructing a model capable of segmenting anything in a zero-shot manner without any annotations is still challenging. In this paper, we propose to utilize the self-attention layers in stable diffusion models to achieve this goal because the pre-trained stable diffusion model has learned inherent concepts of objects within its attention layers. Specifically, we introduce a simple yet effective iterative merging process based on measuring KL divergence among attention maps to merge them into valid segmentation masks. The proposed method does not require any training or language dependency to extract quality segmentation for any images. On COCO-Stuff-27, our method surpasses the prior unsupervised zero-shot SOTA method by an absolute 26% in pixel accuracy and 17% in mean IoU.
PDF

点此查看论文截图

DD-GCN: Directed Diffusion Graph Convolutional Network for Skeleton-based Human Action Recognition

Authors:Chang Li, Qian Huang, Yingchi Mao

Graph Convolutional Networks (GCNs) have been widely used in skeleton-based human action recognition. In GCN-based methods, the spatio-temporal graph is fundamental for capturing motion patterns. However, existing approaches ignore the physical dependency and synchronized spatio-temporal correlations between joints, which limits the representation capability of GCNs. To solve these problems, we construct the directed diffusion graph for action modeling and introduce the activity partition strategy to optimize the weight sharing mechanism of graph convolution kernels. In addition, we present the spatio-temporal synchronization encoder to embed synchronized spatio-temporal semantics. Finally, we propose Directed Diffusion Graph Convolutional Network (DD-GCN) for action recognition, and the experiments on three public datasets: NTU-RGB+D, NTU-RGB+D 120, and NW-UCLA, demonstrate the state-of-the-art performance of our method.
PDF ICEM 2023

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录