2023-08-26 更新
Towards Robust Scene Text Image Super-resolution via Explicit Location Enhancement
Authors:Hang Guo, Tao Dai, Guanghao Meng, Shu-Tao Xia
Scene text image super-resolution (STISR), aiming to improve image quality while boosting downstream scene text recognition accuracy, has recently achieved great success. However, most existing methods treat the foreground (character regions) and background (non-character regions) equally in the forward process, and neglect the disturbance from the complex background, thus limiting the performance. To address these issues, in this paper, we propose a novel method LEMMA that explicitly models character regions to produce high-level text-specific guidance for super-resolution. To model the location of characters effectively, we propose the location enhancement module to extract character region features based on the attention map sequence. Besides, we propose the multi-modal alignment module to perform bidirectional visual-semantic alignment to generate high-quality prior guidance, which is then incorporated into the super-resolution branch in an adaptive manner using the proposed adaptive fusion module. Experiments on TextZoom and four scene text recognition benchmarks demonstrate the superiority of our method over other state-of-the-art methods. Code is available at https://github.com/csguoh/LEMMA.
PDF Accepted as IJCAI2023 paper
点此查看论文截图
Context Perception Parallel Decoder for Scene Text Recognition
Authors:Yongkun Du, Zhineng Chen, Caiyan Jia, Xiaoting Yin, Chenxia Li, Yuning Du, Yu-Gang Jiang
Scene text recognition (STR) methods have struggled to attain high accuracy and fast inference speed. Autoregressive (AR)-based STR model uses the previously recognized characters to decode the next character iteratively. It shows superiority in terms of accuracy. However, the inference speed is slow also due to this iteration. Alternatively, parallel decoding (PD)-based STR model infers all the characters in a single decoding pass. It has advantages in terms of inference speed but worse accuracy, as it is difficult to build a robust recognition context in such a pass. In this paper, we first present an empirical study of AR decoding in STR. In addition to constructing a new AR model with the top accuracy, we find out that the success of AR decoder lies also in providing guidance on visual context perception rather than language modeling as claimed in existing studies. As a consequence, we propose Context Perception Parallel Decoder (CPPD) to decode the character sequence in a single PD pass. CPPD devises a character counting module and a character ordering module. Given a text instance, the former infers the occurrence count of each character, while the latter deduces the character reading order and placeholders. Together with the character prediction task, they construct a context that robustly tells what the character sequence is and where the characters appear, well mimicking the context conveyed by AR decoding. Experiments on both English and Chinese benchmarks demonstrate that CPPD models achieve highly competitive accuracy. Moreover, they run approximately 7x faster than their AR counterparts, and are also among the fastest recognizers. The code will be released soon.
PDF
点此查看论文截图
Multi-Granularity Prediction with Learnable Fusion for Scene Text Recognition
Authors:Cheng Da, Peng Wang, Cong Yao
Due to the enormous technical challenges and wide range of applications, scene text recognition (STR) has been an active research topic in computer vision for years. To tackle this tough problem, numerous innovative methods have been successively proposed, and incorporating linguistic knowledge into STR models has recently become a prominent trend. In this work, we first draw inspiration from the recent progress in Vision Transformer (ViT) to construct a conceptually simple yet functionally powerful vision STR model, which is built upon ViT and a tailored Adaptive Addressing and Aggregation (A$^3$) module. It already outperforms most previous state-of-the-art models for scene text recognition, including both pure vision models and language-augmented methods. To integrate linguistic knowledge, we further propose a Multi-Granularity Prediction strategy to inject information from the language modality into the model in an implicit way, \ie, subword representations (BPE and WordPiece) widely used in NLP are introduced into the output space, in addition to the conventional character level representation, while no independent language model (LM) is adopted. To produce the final recognition results, two strategies for effectively fusing the multi-granularity predictions are devised. The resultant algorithm (termed MGP-STR) is able to push the performance envelope of STR to an even higher level. Specifically, MGP-STR achieves an average recognition accuracy of $94\%$ on standard benchmarks for scene text recognition. Moreover, it also achieves state-of-the-art results on widely-used handwritten benchmarks as well as more challenging scene text datasets, demonstrating the generality of the proposed MGP-STR algorithm. The source code and models will be available at: \url{https://github.com/AlibabaResearch/AdvancedLiterateMachinery/tree/main/OCR/MGP-STR}.
PDF submitted to TPAMI; an extension to our previous ECCV 2022 paper arXiv:2209.03592
点此查看论文截图
Adaptive Segmentation Network for Scene Text Detection
Authors:Guiqin Zhao
Inspired by deep convolution segmentation algorithms, scene text detectors break the performance ceiling of datasets steadily. However, these methods often encounter threshold selection bottlenecks and have poor performance on text instances with extreme aspect ratios. In this paper, we propose to automatically learn the discriminate segmentation threshold, which distinguishes text pixels from background pixels for segmentation-based scene text detectors and then further reduces the time-consuming manual parameter adjustment. Besides, we design a Global-information Enhanced Feature Pyramid Network (GE-FPN) for capturing text instances with macro size and extreme aspect ratios. Following the GE-FPN, we introduce a cascade optimization structure to further refine the text instances. Finally, together with the proposed threshold learning strategy and text detection structure, we design an Adaptive Segmentation Network (ASNet) for scene text detection. Extensive experiments are carried out to demonstrate that the proposed ASNet can achieve the state-of-the-art performance on four text detection benchmarks, i.e., ICDAR 2015, MSRA-TD500, ICDAR 2017 MLT and CTW1500. The ablation experiments also verify the effectiveness of our contributions.
PDF
点此查看论文截图
Relational Contrastive Learning for Scene Text Recognition
Authors:Jinglei Zhang, Tiancheng Lin, Yi Xu, Kai Chen, Rui Zhang
Context-aware methods achieved great success in supervised scene text recognition via incorporating semantic priors from words. We argue that such prior contextual information can be interpreted as the relations of textual primitives due to the heterogeneous text and background, which can provide effective self-supervised labels for representation learning. However, textual relations are restricted to the finite size of dataset due to lexical dependencies, which causes the problem of over-fitting and compromises representation robustness. To this end, we propose to enrich the textual relations via rearrangement, hierarchy and interaction, and design a unified framework called RCLSTR: Relational Contrastive Learning for Scene Text Recognition. Based on causality, we theoretically explain that three modules suppress the bias caused by the contextual prior and thus guarantee representation robustness. Experiments on representation quality show that our method outperforms state-of-the-art self-supervised STR methods. Code is available at https://github.com/ThunderVVV/RCLSTR.
PDF Accepted by ACMMM 2023
点此查看论文截图
FAST: Font-Agnostic Scene Text Editing
Authors:Alloy Das, Prasun Roy, Saumik Bhattacharya, Subhankar Ghosh, Umapada Pal, Michael Blumenstein
Scene Text Editing (STE) is a challenging research problem, and it aims to modify existing texts in an image while preserving the background and the font style of the original text of the image. Due to its various real-life applications, researchers have explored several approaches toward STE in recent years. However, most of the existing STE methods show inferior editing performance because of (1) complex image backgrounds, (2) various font styles, and (3) varying word lengths within the text. To address such inferior editing performance issues, in this paper, we propose a novel font-agnostic scene text editing framework, named FAST, for simultaneously generating text in arbitrary styles and locations while preserving a natural and realistic appearance through combined mask generation and style transfer. The proposed approach differs from the existing methods as they directly modify all image pixels. Instead, the proposed method has introduced a filtering mechanism to remove background distractions, allowing the network to focus solely on the text regions where editing is required. Additionally, a text-style transfer module has been designed to mitigate the challenges posed by varying word lengths. Extensive experiments and ablations have been conducted, and the results demonstrate that the proposed method outperforms the existing methods both qualitatively and quantitatively.
PDF 13 pages, in submission
点此查看论文截图
Towards Scene-Text to Scene-Text Translation
Authors:Onkar Susladkar, Prajwal Gatti, Anand Mishra
In this work, we study the task of ``visually” translating scene text from a source language (e.g., English) to a target language (e.g., Chinese). Visual translation involves not just the recognition and translation of scene text but also the generation of the translated image that preserves visual features of the text, such as font, size, and background. There are several challenges associated with this task, such as interpolating font to unseen characters and preserving text size and the background. To address these, we introduce VTNet, a novel conditional diffusion-based method. To train the VTNet, we create a synthetic cross-lingual dataset of 600K samples of scene text images in six popular languages, including English, Hindi, Tamil, Chinese, Bengali, and German. We evaluate the performance of VTnet through extensive experiments and comparisons to related methods. Our model also surpasses the previous state-of-the-art results on the conventional scene-text editing benchmarks. Further, we present rigorous qualitative studies to understand the strengths and shortcomings of our model. Results show that our approach generalizes well to unseen words and fonts. We firmly believe our work can benefit real-world applications, such as text translation using a phone camera and translating educational materials. Code and data will be made publicly available.
PDF
点此查看论文截图
A Benchmark for Chinese-English Scene Text Image Super-resolution
Authors:Jianqi Ma, Zhetong Liang, Wangmeng Xiang, Xi Yang, Lei Zhang
Scene Text Image Super-resolution (STISR) aims to recover high-resolution (HR) scene text images with visually pleasant and readable text content from the given low-resolution (LR) input. Most existing works focus on recovering English texts, which have relatively simple character structures, while little work has been done on the more challenging Chinese texts with diverse and complex character structures. In this paper, we propose a real-world Chinese-English benchmark dataset, namely Real-CE, for the task of STISR with the emphasis on restoring structurally complex Chinese characters. The benchmark provides 1,935/783 real-world LR-HR text image pairs~(contains 33,789 text lines in total) for training/testing in 2$\times$ and 4$\times$ zooming modes, complemented by detailed annotations, including detection boxes and text transcripts. Moreover, we design an edge-aware learning method, which provides structural supervision in image and feature domains, to effectively reconstruct the dense structures of Chinese characters. We conduct experiments on the proposed Real-CE benchmark and evaluate the existing STISR models with and without our edge-aware loss. The benchmark, including data and source code, is available at https://github.com/mjq11302010044/Real-CE.
PDF Accepted by ICCV2023
点此查看论文截图
TextDiff: Mask-Guided Residual Diffusion Models for Scene Text Image Super-Resolution
Authors:Baolin Liu, Zongyuan Yang, Pengfei Wang, Junjie Zhou, Ziqi Liu, Ziyi Song, Yan Liu, Yongping Xiong
The goal of scene text image super-resolution is to reconstruct high-resolution text-line images from unrecognizable low-resolution inputs. The existing methods relying on the optimization of pixel-level loss tend to yield text edges that exhibit a notable degree of blurring, thereby exerting a substantial impact on both the readability and recognizability of the text. To address these issues, we propose TextDiff, the first diffusion-based framework tailored for scene text image super-resolution. It contains two modules: the Text Enhancement Module (TEM) and the Mask-Guided Residual Diffusion Module (MRD). The TEM generates an initial deblurred text image and a mask that encodes the spatial location of the text. The MRD is responsible for effectively sharpening the text edge by modeling the residuals between the ground-truth images and the initial deblurred images. Extensive experiments demonstrate that our TextDiff achieves state-of-the-art (SOTA) performance on public benchmark datasets and can improve the readability of scene text images. Moreover, our proposed MRD module is plug-and-play that effectively sharpens the text edges produced by SOTA methods. This enhancement not only improves the readability and recognizability of the results generated by SOTA methods but also does not require any additional joint training. Available Codes:https://github.com/Lenubolim/TextDiff.
PDF
点此查看论文截图
Towards Robust Real-Time Scene Text Detection: From Semantic to Instance Representation Learning
Authors:Xugong Qin, Pengyuan Lyu, Chengquan Zhang, Yu Zhou, Kun Yao, Peng Zhang, Hailun Lin, Weiping Wang
Due to the flexible representation of arbitrary-shaped scene text and simple pipeline, bottom-up segmentation-based methods begin to be mainstream in real-time scene text detection. Despite great progress, these methods show deficiencies in robustness and still suffer from false positives and instance adhesion. Different from existing methods which integrate multiple-granularity features or multiple outputs, we resort to the perspective of representation learning in which auxiliary tasks are utilized to enable the encoder to jointly learn robust features with the main task of per-pixel classification during optimization. For semantic representation learning, we propose global-dense semantic contrast (GDSC), in which a vector is extracted for global semantic representation, then used to perform element-wise contrast with the dense grid features. To learn instance-aware representation, we propose to combine top-down modeling (TDM) with the bottom-up framework to provide implicit instance-level clues for the encoder. With the proposed GDSC and TDM, the encoder network learns stronger representation without introducing any parameters and computations during inference. Equipped with a very light decoder, the detector can achieve more robust real-time scene text detection. Experimental results on four public datasets show that the proposed method can outperform or be comparable to the state-of-the-art on both accuracy and speed. Specifically, the proposed method achieves 87.2% F-measure with 48.2 FPS on Total-Text and 89.6% F-measure with 36.9 FPS on MSRA-TD500 on a single GeForce RTX 2080 Ti GPU.
PDF Accepted by ACM MM 2023
点此查看论文截图
Watch Your Steps: Local Image and Scene Editing by Text Instructions
Authors:Ashkan Mirzaei, Tristan Aumentado-Armstrong, Marcus A. Brubaker, Jonathan Kelly, Alex Levinshtein, Konstantinos G. Derpanis, Igor Gilitschenski
Denoising diffusion models have enabled high-quality image generation and editing. We present a method to localize the desired edit region implicit in a text instruction. We leverage InstructPix2Pix (IP2P) and identify the discrepancy between IP2P predictions with and without the instruction. This discrepancy is referred to as the relevance map. The relevance map conveys the importance of changing each pixel to achieve the edits, and is used to to guide the modifications. This guidance ensures that the irrelevant pixels remain unchanged. Relevance maps are further used to enhance the quality of text-guided editing of 3D scenes in the form of neural radiance fields. A field is trained on relevance maps of training views, denoted as the relevance field, defining the 3D region within which modifications should be made. We perform iterative updates on the training views guided by rendered relevance maps from the relevance field. Our method achieves state-of-the-art performance on both image and NeRF editing tasks. Project page: https://ashmrz.github.io/WatchYourSteps/
PDF Project page: https://ashmrz.github.io/WatchYourSteps/
点此查看论文截图
ESTextSpotter: Towards Better Scene Text Spotting with Explicit Synergy in Transformer
Authors:Mingxin Huang, Jiaxin Zhang, Dezhi Peng, Hao Lu, Can Huang, Yuliang Liu, Xiang Bai, Lianwen Jin
In recent years, end-to-end scene text spotting approaches are evolving to the Transformer-based framework. While previous studies have shown the crucial importance of the intrinsic synergy between text detection and recognition, recent advances in Transformer-based methods usually adopt an implicit synergy strategy with shared query, which can not fully realize the potential of these two interactive tasks. In this paper, we argue that the explicit synergy considering distinct characteristics of text detection and recognition can significantly improve the performance text spotting. To this end, we introduce a new model named Explicit Synergy-based Text Spotting Transformer framework (ESTextSpotter), which achieves explicit synergy by modeling discriminative and interactive features for text detection and recognition within a single decoder. Specifically, we decompose the conventional shared query into task-aware queries for text polygon and content, respectively. Through the decoder with the proposed vision-language communication module, the queries interact with each other in an explicit manner while preserving discriminative patterns of text detection and recognition, thus improving performance significantly. Additionally, we propose a task-aware query initialization scheme to ensure stable training. Experimental results demonstrate that our model significantly outperforms previous state-of-the-art methods. Code is available at https://github.com/mxin262/ESTextSpotter.
PDF Accepted to ICCV 2023
点此查看论文截图
Turning a CLIP Model into a Scene Text Spotter
Authors:Wenwen Yu, Yuliang Liu, Xingkui Zhu, Haoyu Cao, Xing Sun, Xiang Bai
We exploit the potential of the large-scale Contrastive Language-Image Pretraining (CLIP) model to enhance scene text detection and spotting tasks, transforming it into a robust backbone, FastTCM-CR50. This backbone utilizes visual prompt learning and cross-attention in CLIP to extract image and text-based prior knowledge. Using predefined and learnable prompts, FastTCM-CR50 introduces an instance-language matching process to enhance the synergy between image and text embeddings, thereby refining text regions. Our Bimodal Similarity Matching (BSM) module facilitates dynamic language prompt generation, enabling offline computations and improving performance. FastTCM-CR50 offers several advantages: 1) It can enhance existing text detectors and spotters, improving performance by an average of 1.7% and 1.5%, respectively. 2) It outperforms the previous TCM-CR50 backbone, yielding an average improvement of 0.2% and 0.56% in text detection and spotting tasks, along with a 48.5% increase in inference speed. 3) It showcases robust few-shot training capabilities. Utilizing only 10% of the supervised data, FastTCM-CR50 improves performance by an average of 26.5% and 5.5% for text detection and spotting tasks, respectively. 4) It consistently enhances performance on out-of-distribution text detection and spotting datasets, particularly the NightTime-ArT subset from ICDAR2019-ArT and the DOTA dataset for oriented object detection. The code is available at https://github.com/wenwenyu/TCM.
PDF arXiv admin note: text overlap with arXiv:2302.14338
点此查看论文截图
LISTER: Neighbor Decoding for Length-Insensitive Scene Text Recognition
Authors:Changxu Cheng, Peng Wang, Cheng Da, Qi Zheng, Cong Yao
The diversity in length constitutes a significant characteristic of text. Due to the long-tail distribution of text lengths, most existing methods for scene text recognition (STR) only work well on short or seen-length text, lacking the capability of recognizing longer text or performing length extrapolation. This is a crucial issue, since the lengths of the text to be recognized are usually not given in advance in real-world applications, but it has not been adequately investigated in previous works. Therefore, we propose in this paper a method called Length-Insensitive Scene TExt Recognizer (LISTER), which remedies the limitation regarding the robustness to various text lengths. Specifically, a Neighbor Decoder is proposed to obtain accurate character attention maps with the assistance of a novel neighbor matrix regardless of the text lengths. Besides, a Feature Enhancement Module is devised to model the long-range dependency with low computation cost, which is able to perform iterations with the neighbor decoder to enhance the feature map progressively. To the best of our knowledge, we are the first to achieve effective length-insensitive scene text recognition. Extensive experiments demonstrate that the proposed LISTER algorithm exhibits obvious superiority on long text recognition and the ability for length extrapolation, while comparing favourably with the previous state-of-the-art methods on standard benchmarks for STR (mainly short text).
PDF ICCV 2023
点此查看论文截图
MixNet: Toward Accurate Detection of Challenging Scene Text in the Wild
Authors:Yu-Xiang Zeng, Jun-Wei Hsieh, Xin Li, Ming-Ching Chang
Detecting small scene text instances in the wild is particularly challenging, where the influence of irregular positions and nonideal lighting often leads to detection errors. We present MixNet, a hybrid architecture that combines the strengths of CNNs and Transformers, capable of accurately detecting small text from challenging natural scenes, regardless of the orientations, styles, and lighting conditions. MixNet incorporates two key modules: (1) the Feature Shuffle Network (FSNet) to serve as the backbone and (2) the Central Transformer Block (CTBlock) to exploit the 1D manifold constraint of the scene text. We first introduce a novel feature shuffling strategy in FSNet to facilitate the exchange of features across multiple scales, generating high-resolution features superior to popular ResNet and HRNet. The FSNet backbone has achieved significant improvements over many existing text detection methods, including PAN, DB, and FAST. Then we design a complementary CTBlock to leverage center line based features similar to the medial axis of text regions and show that it can outperform contour-based approaches in challenging cases when small scene texts appear closely. Extensive experimental results show that MixNet, which mixes FSNet with CTBlock, achieves state-of-the-art results on multiple scene text detection datasets.
PDF