无监督/半监督/对比学习


2023-07-20 更新

Semantic Contrastive Bootstrapping for Single-positive Multi-label Recognition

Authors:Cheng Chen, Yifan Zhao, Jia Li

Learning multi-label image recognition with incomplete annotation is gaining popularity due to its superior performance and significant labor savings when compared to training with fully labeled datasets. Existing literature mainly focuses on label completion and co-occurrence learning while facing difficulties with the most common single-positive label manner. To tackle this problem, we present a semantic contrastive bootstrapping (Scob) approach to gradually recover the cross-object relationships by introducing class activation as semantic guidance. With this learning guidance, we then propose a recurrent semantic masked transformer to extract iconic object-level representations and delve into the contrastive learning problems on multi-label classification tasks. We further propose a bootstrapping framework in an Expectation-Maximization fashion that iteratively optimizes the network parameters and refines semantic guidance to alleviate possible disturbance caused by wrong semantic guidance. Extensive experimental results demonstrate that the proposed joint learning framework surpasses the state-of-the-art models by a large margin on four public multi-label image recognition benchmarks. Codes can be found at https://github.com/iCVTEAM/Scob.
PDF 18 pages, 11 figures, To Appear in IJCV 2023

点此查看论文截图

Semantic-Aware Dual Contrastive Learning for Multi-label Image Classification

Authors:Leilei Ma, Dengdi Sun, Lei Wang, Haifang Zhao, Bin Luo

Extracting image semantics effectively and assigning corresponding labels to multiple objects or attributes for natural images is challenging due to the complex scene contents and confusing label dependencies. Recent works have focused on modeling label relationships with graph and understanding object regions using class activation maps (CAM). However, these methods ignore the complex intra- and inter-category relationships among specific semantic features, and CAM is prone to generate noisy information. To this end, we propose a novel semantic-aware dual contrastive learning framework that incorporates sample-to-sample contrastive learning (SSCL) as well as prototype-to-sample contrastive learning (PSCL). Specifically, we leverage semantic-aware representation learning to extract category-related local discriminative features and construct category prototypes. Then based on SSCL, label-level visual representations of the same category are aggregated together, and features belonging to distinct categories are separated. Meanwhile, we construct a novel PSCL module to narrow the distance between positive samples and category prototypes and push negative samples away from the corresponding category prototypes. Finally, the discriminative label-level features related to the image content are accurately captured by the joint training of the above three parts. Experiments on five challenging large-scale public datasets demonstrate that our proposed method is effective and outperforms the state-of-the-art methods. Code and supplementary materials are released on https://github.com/yu-gi-oh-leilei/SADCL.
PDF 8 pages, 6 figures, accepted by ECAI 23

点此查看论文截图

Space Engage: Collaborative Space Supervision for Contrastive-based Semi-Supervised Semantic Segmentation

Authors:Changqi Wang, Haoyu Xie, Yuhui Yuan, Chong Fu, Xiangyu Yue

Semi-Supervised Semantic Segmentation (S4) aims to train a segmentation model with limited labeled images and a substantial volume of unlabeled images. To improve the robustness of representations, powerful methods introduce a pixel-wise contrastive learning approach in latent space (i.e., representation space) that aggregates the representations to their prototypes in a fully supervised manner. However, previous contrastive-based S4 methods merely rely on the supervision from the model’s output (logits) in logit space during unlabeled training. In contrast, we utilize the outputs in both logit space and representation space to obtain supervision in a collaborative way. The supervision from two spaces plays two roles: 1) reduces the risk of over-fitting to incorrect semantic information in logits with the help of representations; 2) enhances the knowledge exchange between the two spaces. Furthermore, unlike previous approaches, we use the similarity between representations and prototypes as a new indicator to tilt training those under-performing representations and achieve a more efficient contrastive learning process. Results on two public benchmarks demonstrate the competitive performance of our method compared with state-of-the-art methods.
PDF Accepted to ICCV 2023

点此查看论文截图

Source-Free Domain Adaptation for Medical Image Segmentation via Prototype-Anchored Feature Alignment and Contrastive Learning

Authors:Qinji Yu, Nan Xi, Junsong Yuan, Ziyu Zhou, Kang Dang, Xiaowei Ding

Unsupervised domain adaptation (UDA) has increasingly gained interests for its capacity to transfer the knowledge learned from a labeled source domain to an unlabeled target domain. However, typical UDA methods require concurrent access to both the source and target domain data, which largely limits its application in medical scenarios where source data is often unavailable due to privacy concern. To tackle the source data-absent problem, we present a novel two-stage source-free domain adaptation (SFDA) framework for medical image segmentation, where only a well-trained source segmentation model and unlabeled target data are available during domain adaptation. Specifically, in the prototype-anchored feature alignment stage, we first utilize the weights of the pre-trained pixel-wise classifier as source prototypes, which preserve the information of source features. Then, we introduce the bi-directional transport to align the target features with class prototypes by minimizing its expected cost. On top of that, a contrastive learning stage is further devised to utilize those pixels with unreliable predictions for a more compact target feature distribution. Extensive experiments on a cross-modality medical segmentation task demonstrate the superiority of our method in large domain discrepancy settings compared with the state-of-the-art SFDA approaches and even some UDA methods. Code is available at https://github.com/CSCYQJ/MICCAI23-ProtoContra-SFDA.
PDF Accepted by MICCAI23

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录