2023-07-20 更新
SINC: Self-Supervised In-Context Learning for Vision-Language Tasks
Authors:Yi-Syuan Chen, Yun-Zhu Song, Cheng Yu Yeo, Bei Liu, Jianlong Fu, Hong-Han Shuai
Large Pre-trained Transformers exhibit an intriguing capacity for in-context learning. Without gradient updates, these models can rapidly construct new predictors from demonstrations presented in the inputs. Recent works promote this ability in the vision-language domain by incorporating visual information into large language models that can already make in-context predictions. However, these methods could inherit issues in the language domain, such as template sensitivity and hallucination. Also, the scale of these language models raises a significant demand for computations, making learning and operating these models resource-intensive. To this end, we raise a question: ``How can we enable in-context learning for general models without being constrained on large language models?”. To answer it, we propose a succinct and general framework, Self-supervised IN-Context learning (SINC), that introduces a meta-model to learn on self-supervised prompts consisting of tailored demonstrations. The learned models can be transferred to downstream tasks for making in-context predictions on-the-fly. Extensive experiments show that SINC outperforms gradient-based methods in various vision-language tasks under few-shot settings. Furthermore, the designs of SINC help us investigate the benefits of in-context learning across different tasks, and the analysis further reveals the essential components for the emergence of in-context learning in the vision-language domain.
PDF Accepted by ICCV 2023; Preprint
点此查看论文截图
Multiscale Memory Comparator Transformer for Few-Shot Video Segmentation
Authors:Mennatullah Siam, Rezaul Karim, He Zhao, Richard Wildes
Few-shot video segmentation is the task of delineating a specific novel class in a query video using few labelled support images. Typical approaches compare support and query features while limiting comparisons to a single feature layer and thereby ignore potentially valuable information. We present a meta-learned Multiscale Memory Comparator (MMC) for few-shot video segmentation that combines information across scales within a transformer decoder. Typical multiscale transformer decoders for segmentation tasks learn a compressed representation, their queries, through information exchange across scales. Unlike previous work, we instead preserve the detailed feature maps during across scale information exchange via a multiscale memory transformer decoding to reduce confusion between the background and novel class. Integral to the approach, we investigate multiple forms of information exchange across scales in different tasks and provide insights with empirical evidence on which to use in each task. The overall comparisons among query and support features benefit from both rich semantics and precise localization. We demonstrate our approach primarily on few-shot video object segmentation and an adapted version on the fully supervised counterpart. In all cases, our approach outperforms the baseline and yields state-of-the-art performance. Our code is publicly available at https://github.com/MSiam/MMC-MultiscaleMemory.
PDF
点此查看论文截图
Is Prompt-Based Finetuning Always Better than Vanilla Finetuning? Insights from Cross-Lingual Language Understanding
Authors:Bolei Ma, Ercong Nie, Helmut Schmid, Hinrich Schütze
Multilingual pretrained language models (MPLMs) have demonstrated substantial performance improvements in zero-shot cross-lingual transfer across various natural language understanding tasks by finetuning MPLMs on task-specific labelled data of a source language (e.g. English) and evaluating on a wide range of target languages. Recent studies show that prompt-based finetuning surpasses regular finetuning in few-shot scenarios. However, the exploration of prompt-based learning in multilingual tasks remains limited. In this study, we propose the ProFiT pipeline to investigate the cross-lingual capabilities of Prompt-based Finetuning. We conduct comprehensive experiments on diverse cross-lingual language understanding tasks (sentiment classification, paraphrase identification, and natural language inference) and empirically analyze the variation trends of prompt-based finetuning performance in cross-lingual transfer across different few-shot and full-data settings. Our results reveal the effectiveness and versatility of prompt-based finetuning in cross-lingual language understanding. Our findings indicate that prompt-based finetuning outperforms vanilla finetuning in full-data scenarios and exhibits greater advantages in few-shot scenarios, with different performance patterns dependent on task types. Additionally, we analyze underlying factors such as language similarity and pretraining data size that impact the cross-lingual performance of prompt-based finetuning. Overall, our work provides valuable insights into the cross-lingual prowess of prompt-based finetuning.
PDF KONVENS 2023
点此查看论文截图
Holistic Prototype Attention Network for Few-Shot VOS
Authors:Yin Tang, Tao Chen, Xiruo Jiang, Yazhou Yao, Guo-Sen Xie, Heng-Tao Shen
Few-shot video object segmentation (FSVOS) aims to segment dynamic objects of unseen classes by resorting to a small set of support images that contain pixel-level object annotations. Existing methods have demonstrated that the domain agent-based attention mechanism is effective in FSVOS by learning the correlation between support images and query frames. However, the agent frame contains redundant pixel information and background noise, resulting in inferior segmentation performance. Moreover, existing methods tend to ignore inter-frame correlations in query videos. To alleviate the above dilemma, we propose a holistic prototype attention network (HPAN) for advancing FSVOS. Specifically, HPAN introduces a prototype graph attention module (PGAM) and a bidirectional prototype attention module (BPAM), transferring informative knowledge from seen to unseen classes. PGAM generates local prototypes from all foreground features and then utilizes their internal correlations to enhance the representation of the holistic prototypes. BPAM exploits the holistic information from support images and video frames by fusing co-attention and self-attention to achieve support-query semantic consistency and inner-frame temporal consistency. Extensive experiments on YouTube-FSVOS have been provided to demonstrate the effectiveness and superiority of our proposed HPAN method.
PDF accepted by IEEE Transactions on Circuits and Systems for Video Technology
点此查看论文截图
Unifying Token and Span Level Supervisions for Few-Shot Sequence Labeling
Authors:Zifeng Cheng, Qingyu Zhou, Zhiwei Jiang, Xuemin Zhao, Yunbo Cao, Qing Gu
Few-shot sequence labeling aims to identify novel classes based on only a few labeled samples. Existing methods solve the data scarcity problem mainly by designing token-level or span-level labeling models based on metric learning. However, these methods are only trained at a single granularity (i.e., either token level or span level) and have some weaknesses of the corresponding granularity. In this paper, we first unify token and span level supervisions and propose a Consistent Dual Adaptive Prototypical (CDAP) network for few-shot sequence labeling. CDAP contains the token-level and span-level networks, jointly trained at different granularities. To align the outputs of two networks, we further propose a consistent loss to enable them to learn from each other. During the inference phase, we propose a consistent greedy inference algorithm that first adjusts the predicted probability and then greedily selects non-overlapping spans with maximum probability. Extensive experiments show that our model achieves new state-of-the-art results on three benchmark datasets.
PDF Accepted by ACM Transactions on Information Systems
点此查看论文截图
NTK-approximating MLP Fusion for Efficient Language Model Fine-tuning
Authors:Tianxin Wei, Zeming Guo, Yifan Chen, Jingrui He
Fine-tuning a pre-trained language model (PLM) emerges as the predominant strategy in many natural language processing applications. However, even fine-tuning the PLMs and doing inference are expensive, especially on edge devices with low computing power. Some general approaches (e.g. quantization and distillation) have been widely studied to reduce the compute/memory of PLM fine-tuning, while very few one-shot compression techniques are explored. In this paper, we investigate the neural tangent kernel (NTK)—which reveals the gradient descent dynamics of neural networks—of the multilayer perceptrons (MLP) modules in a PLM and propose to coin a lightweight PLM through NTK-approximating MLP fusion. To achieve this, we reconsider the MLP as a bundle of sub-MLPs, and cluster them into a given number of centroids, which can then be restored as a compressed MLP and surprisingly shown to well approximate the NTK of the original PLM. Extensive experiments of PLM fine-tuning on both natural language understanding (NLU) and generation (NLG) tasks are provided to verify the effectiveness of the proposed method MLP fusion. Our code is available at https://github.com/weitianxin/MLP_Fusion.
PDF ICML 2023
点此查看论文截图
PixelHuman: Animatable Neural Radiance Fields from Few Images
Authors:Gyumin Shim, Jaeseong Lee, Junha Hyung, Jaegul Choo
In this paper, we propose PixelHuman, a novel human rendering model that generates animatable human scenes from a few images of a person with unseen identity, views, and poses. Previous work have demonstrated reasonable performance in novel view and pose synthesis, but they rely on a large number of images to train and are trained per scene from videos, which requires significant amount of time to produce animatable scenes from unseen human images. Our method differs from existing methods in that it can generalize to any input image for animatable human synthesis. Given a random pose sequence, our method synthesizes each target scene using a neural radiance field that is conditioned on a canonical representation and pose-aware pixel-aligned features, both of which can be obtained through deformation fields learned in a data-driven manner. Our experiments show that our method achieves state-of-the-art performance in multiview and novel pose synthesis from few-shot images.
PDF 8 pages
点此查看论文截图
Rethinking Intersection Over Union for Small Object Detection in Few-Shot Regime
Authors:Pierre Le Jeune, Anissa Mokraoui
In Few-Shot Object Detection (FSOD), detecting small objects is extremely difficult. The limited supervision cripples the localization capabilities of the models and a few pixels shift can dramatically reduce the Intersection over Union (IoU) between the ground truth and predicted boxes for small objects. To this end, we propose Scale-adaptive Intersection over Union (SIoU), a novel box similarity measure. SIoU changes with the objects’ size, it is more lenient with small object shifts. We conducted a user study and SIoU better aligns than IoU with human judgment. Employing SIoU as an evaluation criterion helps to build more user-oriented models. SIoU can also be used as a loss function to prioritize small objects during training, outperforming existing loss functions. SIoU improves small object detection in the non-few-shot regime, but this setting is unrealistic in the industry as annotated detection datasets are often too expensive to acquire. Hence, our experiments mainly focus on the few-shot regime to demonstrate the superiority and versatility of SIoU loss. SIoU improves significantly FSOD performance on small objects in both natural (Pascal VOC and COCO datasets) and aerial images (DOTA and DIOR). In aerial imagery, small objects are critical and SIoU loss achieves new state-of-the-art FSOD on DOTA and DIOR.
PDF
点此查看论文截图
DenseMP: Unsupervised Dense Pre-training for Few-shot Medical Image Segmentation
Authors:Zhaoxin Fan, Puquan Pan, Zeren Zhang, Ce Chen, Tianyang Wang, Siyang Zheng, Min Xu
Few-shot medical image semantic segmentation is of paramount importance in the domain of medical image analysis. However, existing methodologies grapple with the challenge of data scarcity during the training phase, leading to over-fitting. To mitigate this issue, we introduce a novel Unsupervised Dense Few-shot Medical Image Segmentation Model Training Pipeline (DenseMP) that capitalizes on unsupervised dense pre-training. DenseMP is composed of two distinct stages: (1) segmentation-aware dense contrastive pre-training, and (2) few-shot-aware superpixel guided dense pre-training. These stages collaboratively yield a pre-trained initial model specifically designed for few-shot medical image segmentation, which can subsequently be fine-tuned on the target dataset. Our proposed pipeline significantly enhances the performance of the widely recognized few-shot segmentation model, PA-Net, achieving state-of-the-art results on the Abd-CT and Abd-MRI datasets. Code will be released after acceptance.
PDF
点此查看论文截图
DialogStudio: Towards Richest and Most Diverse Unified Dataset Collection for Conversational AI
Authors:Jianguo Zhang, Kun Qian, Zhiwei Liu, Shelby Heinecke, Rui Meng, Ye Liu, Zhou Yu, Silvio Savarese, Caiming Xiong
Despite advancements in conversational AI, language models encounter challenges to handle diverse conversational tasks, and existing dialogue dataset collections often lack diversity and comprehensiveness. To tackle these issues, we introduce DialogStudio: the largest and most diverse collection of dialogue datasets, unified under a consistent format while preserving their original information. Our collection encompasses data from open-domain dialogues, task-oriented dialogues, natural language understanding, conversational recommendation, dialogue summarization, and knowledge-grounded dialogues, making it an incredibly rich and diverse resource for dialogue research and model training. To further enhance the utility of DialogStudio, we identify the licenses for each dataset and design domain-aware prompts for selected dialogues to facilitate instruction-aware fine-tuning. Furthermore, we develop conversational AI models using the dataset collection, and our experiments in both zero-shot and few-shot learning scenarios demonstrate the superiority of DialogStudio. To improve transparency and support dataset and task-based research, as well as language model pre-training, all datasets, licenses, codes, and models associated with DialogStudio are made publicly accessible at https://github.com/salesforce/DialogStudio
PDF