Domain Adaptation


2023-07-20 更新

Revisiting Domain-Adaptive 3D Object Detection by Reliable, Diverse and Class-balanced Pseudo-Labeling

Authors:Zhuoxiao Chen, Yadan Luo, Zi Huang, Zheng Wang, Mahsa Baktashmotlagh

Unsupervised domain adaptation (DA) with the aid of pseudo labeling techniques has emerged as a crucial approach for domain-adaptive 3D object detection. While effective, existing DA methods suffer from a substantial drop in performance when applied to a multi-class training setting, due to the co-existence of low-quality pseudo labels and class imbalance issues. In this paper, we address this challenge by proposing a novel ReDB framework tailored for learning to detect all classes at once. Our approach produces Reliable, Diverse, and class-Balanced pseudo 3D boxes to iteratively guide the self-training on a distributionally different target domain. To alleviate disruptions caused by the environmental discrepancy (e.g., beam numbers), the proposed cross-domain examination (CDE) assesses the correctness of pseudo labels by copy-pasting target instances into a source environment and measuring the prediction consistency. To reduce computational overhead and mitigate the object shift (e.g., scales and point densities), we design an overlapped boxes counting (OBC) metric that allows to uniformly downsample pseudo-labeled objects across different geometric characteristics. To confront the issue of inter-class imbalance, we progressively augment the target point clouds with a class-balanced set of pseudo-labeled target instances and source objects, which boosts recognition accuracies on both frequently appearing and rare classes. Experimental results on three benchmark datasets using both voxel-based (i.e., SECOND) and point-based 3D detectors (i.e., PointRCNN) demonstrate that our proposed ReDB approach outperforms existing 3D domain adaptation methods by a large margin, improving 23.15% mAP on the nuScenes $\rightarrow$ KITTI task.
PDF ICCV 2023

点此查看论文截图

Dual-level Interaction for Domain Adaptive Semantic Segmentation

Authors:Dongyu Yao, Boheng Li, Run Wang, Lina Wang

To circumvent the costly pixel-wise annotations of real-world images in the semantic segmentation task, the Unsupervised Domain Adaptation (UDA) is explored to firstly train a model with the labeled source data (synthetic images) and then adapt it to the unlabeled target data (real images). Among all the techniques being studied, the self-training approach recently secures its position in domain adaptive semantic segmentation, where a model is trained with target domain pseudo-labels. Current advances have mitigated noisy pseudo-labels resulting from the domain gap. However, they still struggle with erroneous pseudo-labels near the decision boundaries of the semantic classifier. In this paper, we tackle this issue by proposing a dual-level interaction for domain adaptation (DIDA) in semantic segmentation. Explicitly, we encourage the different augmented views of the same pixel to have not only similar class prediction (semantic-level) but also akin similarity relationship respected to other pixels (instance-level). As it is impossible to keep features of all pixel instances for a dataset, we novelly design and maintain a labeled instance bank with dynamic updating strategies to selectively store the informative features of instances. Further, DIDA performs cross-level interaction with scattering and gathering techniques to regenerate more reliable pseudolabels. Our method outperforms the state-of-the-art by a notable margin, especially on confusing and long-tailed classes. Code is available at https://github.com/RainJamesY/DIDA.
PDF In submission, a preprint version

点此查看论文截图

CLIP-Guided StyleGAN Inversion for Text-Driven Real Image Editing

Authors:Ahmet Canberk Baykal, Abdul Basit Anees, Duygu Ceylan, Erkut Erdem, Aykut Erdem, Deniz Yuret

Researchers have recently begun exploring the use of StyleGAN-based models for real image editing. One particularly interesting application is using natural language descriptions to guide the editing process. Existing approaches for editing images using language either resort to instance-level latent code optimization or map predefined text prompts to some editing directions in the latent space. However, these approaches have inherent limitations. The former is not very efficient, while the latter often struggles to effectively handle multi-attribute changes. To address these weaknesses, we present CLIPInverter, a new text-driven image editing approach that is able to efficiently and reliably perform multi-attribute changes. The core of our method is the use of novel, lightweight text-conditioned adapter layers integrated into pretrained GAN-inversion networks. We demonstrate that by conditioning the initial inversion step on the CLIP embedding of the target description, we are able to obtain more successful edit directions. Additionally, we use a CLIP-guided refinement step to make corrections in the resulting residual latent codes, which further improves the alignment with the text prompt. Our method outperforms competing approaches in terms of manipulation accuracy and photo-realism on various domains including human faces, cats, and birds, as shown by our qualitative and quantitative results.
PDF Accepted for publication in ACM Transactions on Graphics

点此查看论文截图

Multi-Domain Learning with Modulation Adapters

Authors:Ekaterina Iakovleva, Karteek Alahari, Jakob Verbeek

Deep convolutional networks are ubiquitous in computer vision, due to their excellent performance across different tasks for various domains. Models are, however, often trained in isolation for each task, failing to exploit relatedness between tasks and domains to learn more compact models that generalise better in low-data regimes. Multi-domain learning aims to handle related tasks, such as image classification across multiple domains, simultaneously. Previous work on this problem explored the use of a pre-trained and fixed domain-agnostic base network, in combination with smaller learnable domain-specific adaptation modules. In this paper, we introduce Modulation Adapters, which update the convolutional filter weights of the model in a multiplicative manner for each task. Parameterising these adaptation weights in a factored manner allows us to scale the number of per-task parameters in a flexible manner, and to strike different parameter-accuracy trade-offs. We evaluate our approach on the Visual Decathlon challenge, composed of ten image classification tasks across different domains, and on the ImageNet-to-Sketch benchmark, which consists of six image classification tasks. Our approach yields excellent results, with accuracies that are comparable to or better than those of existing state-of-the-art approaches.
PDF

点此查看论文截图

Similarity Min-Max: Zero-Shot Day-Night Domain Adaptation

Authors:Rundong Luo, Wenjing Wang, Wenhan Yang, Jiaying Liu

Low-light conditions not only hamper human visual experience but also degrade the model’s performance on downstream vision tasks. While existing works make remarkable progress on day-night domain adaptation, they rely heavily on domain knowledge derived from the task-specific nighttime dataset. This paper challenges a more complicated scenario with border applicability, i.e., zero-shot day-night domain adaptation, which eliminates reliance on any nighttime data. Unlike prior zero-shot adaptation approaches emphasizing either image-level translation or model-level adaptation, we propose a similarity min-max paradigm that considers them under a unified framework. On the image level, we darken images towards minimum feature similarity to enlarge the domain gap. Then on the model level, we maximize the feature similarity between the darkened images and their normal-light counterparts for better model adaptation. To the best of our knowledge, this work represents the pioneering effort in jointly optimizing both aspects, resulting in a significant improvement of model generalizability. Extensive experiments demonstrate our method’s effectiveness and broad applicability on various nighttime vision tasks, including classification, semantic segmentation, visual place recognition, and video action recognition. Code and pre-trained models are available at https://red-fairy.github.io/ZeroShotDayNightDA-Webpage/.
PDF ICCV 2023

点此查看论文截图

Online Self-Supervised Thermal Water Segmentation for Aerial Vehicles

Authors:Connor Lee, Jonathan Gustafsson Frennert, Lu Gan, Matthew Anderson, Soon-Jo Chung

We present a new method to adapt an RGB-trained water segmentation network to target-domain aerial thermal imagery using online self-supervision by leveraging texture and motion cues as supervisory signals. This new thermal capability enables current autonomous aerial robots operating in near-shore environments to perform tasks such as visual navigation, bathymetry, and flow tracking at night. Our method overcomes the problem of scarce and difficult-to-obtain near-shore thermal data that prevents the application of conventional supervised and unsupervised methods. In this work, we curate the first aerial thermal near-shore dataset, show that our approach outperforms fully-supervised segmentation models trained on limited target-domain thermal data, and demonstrate real-time capabilities onboard an Nvidia Jetson embedded computing platform. Code and datasets used in this work will be available at: https://github.com/connorlee77/uav-thermal-water-segmentation.
PDF 8 pages, 4 figures, 3 tables

点此查看论文截图

Can Model Fusing Help Transformers in Long Document Classification? An Empirical Study

Authors:Damith Premasiri, Tharindu Ranasinghe, Ruslan Mitkov

Text classification is an area of research which has been studied over the years in Natural Language Processing (NLP). Adapting NLP to multiple domains has introduced many new challenges for text classification and one of them is long document classification. While state-of-the-art transformer models provide excellent results in text classification, most of them have limitations in the maximum sequence length of the input sequence. The majority of the transformer models are limited to 512 tokens, and therefore, they struggle with long document classification problems. In this research, we explore on employing Model Fusing for long document classification while comparing the results with well-known BERT and Longformer architectures.
PDF Accepted in RANLP 2023

点此查看论文截图

Source-Free Domain Adaptation for Medical Image Segmentation via Prototype-Anchored Feature Alignment and Contrastive Learning

Authors:Qinji Yu, Nan Xi, Junsong Yuan, Ziyu Zhou, Kang Dang, Xiaowei Ding

Unsupervised domain adaptation (UDA) has increasingly gained interests for its capacity to transfer the knowledge learned from a labeled source domain to an unlabeled target domain. However, typical UDA methods require concurrent access to both the source and target domain data, which largely limits its application in medical scenarios where source data is often unavailable due to privacy concern. To tackle the source data-absent problem, we present a novel two-stage source-free domain adaptation (SFDA) framework for medical image segmentation, where only a well-trained source segmentation model and unlabeled target data are available during domain adaptation. Specifically, in the prototype-anchored feature alignment stage, we first utilize the weights of the pre-trained pixel-wise classifier as source prototypes, which preserve the information of source features. Then, we introduce the bi-directional transport to align the target features with class prototypes by minimizing its expected cost. On top of that, a contrastive learning stage is further devised to utilize those pixels with unreliable predictions for a more compact target feature distribution. Extensive experiments on a cross-modality medical segmentation task demonstrate the superiority of our method in large domain discrepancy settings compared with the state-of-the-art SFDA approaches and even some UDA methods. Code is available at https://github.com/CSCYQJ/MICCAI23-ProtoContra-SFDA.
PDF Accepted by MICCAI23

点此查看论文截图

DVPT: Dynamic Visual Prompt Tuning of Large Pre-trained Models for Medical Image Analysis

Authors:Along He, Kai Wang, Zhihong Wang, Tao Li, Huazhu Fu

Limited labeled data makes it hard to train models from scratch in medical domain, and an important paradigm is pre-training and then fine-tuning. Large pre-trained models contain rich representations, which can be adapted to downstream medical tasks. However, existing methods either tune all the parameters or the task-specific layers of the pre-trained models, ignoring the input variations of medical images, and thus they are not efficient or effective. In this work, we aim to study parameter-efficient fine-tuning (PEFT) for medical image analysis, and propose a dynamic visual prompt tuning method, named DVPT. It can extract knowledge beneficial to downstream tasks from large models with a few trainable parameters. Firstly, the frozen features are transformed by an lightweight bottleneck layer to learn the domain-specific distribution of downstream medical tasks, and then a few learnable visual prompts are used as dynamic queries and then conduct cross-attention with the transformed features, attempting to acquire sample-specific knowledge that are suitable for each sample. Finally, the features are projected to original feature dimension and aggregated with the frozen features. This DVPT module can be shared between different Transformer layers, further reducing the trainable parameters. To validate DVPT, we conduct extensive experiments with different pre-trained models on medical classification and segmentation tasks. We find such PEFT method can not only efficiently adapt the pre-trained models to the medical domain, but also brings data efficiency with partial labeled data. For example, with 0.5\% extra trainable parameters, our method not only outperforms state-of-the-art PEFT methods, even surpasses the full fine-tuning by more than 2.20\% Kappa score on medical classification task. It can saves up to 60\% labeled data and 99\% storage cost of ViT-B/16.
PDF

点此查看论文截图

BSDM: Background Suppression Diffusion Model for Hyperspectral Anomaly Detection

Authors:Jitao Ma, Weiying Xie, Yunsong Li, Leyuan Fang

Hyperspectral anomaly detection (HAD) is widely used in Earth observation and deep space exploration. A major challenge for HAD is the complex background of the input hyperspectral images (HSIs), resulting in anomalies confused in the background. On the other hand, the lack of labeled samples for HSIs leads to poor generalization of existing HAD methods. This paper starts the first attempt to study a new and generalizable background learning problem without labeled samples. We present a novel solution BSDM (background suppression diffusion model) for HAD, which can simultaneously learn latent background distributions and generalize to different datasets for suppressing complex background. It is featured in three aspects: (1) For the complex background of HSIs, we design pseudo background noise and learn the potential background distribution in it with a diffusion model (DM). (2) For the generalizability problem, we apply a statistical offset module so that the BSDM adapts to datasets of different domains without labeling samples. (3) For achieving background suppression, we innovatively improve the inference process of DM by feeding the original HSIs into the denoising network, which removes the background as noise. Our work paves a new background suppression way for HAD that can improve HAD performance without the prerequisite of manually labeled data. Assessments and generalization experiments of four HAD methods on several real HSI datasets demonstrate the above three unique properties of the proposed method. The code is available at https://github.com/majitao-xd/BSDM-HAD.
PDF

点此查看论文截图

Source-Free Domain Adaptive Fundus Image Segmentation with Class-Balanced Mean Teacher

Authors:Longxiang Tang, Kai Li, Chunming He, Yulun Zhang, Xiu Li

This paper studies source-free domain adaptive fundus image segmentation which aims to adapt a pretrained fundus segmentation model to a target domain using unlabeled images. This is a challenging task because it is highly risky to adapt a model only using unlabeled data. Most existing methods tackle this task mainly by designing techniques to carefully generate pseudo labels from the model’s predictions and use the pseudo labels to train the model. While often obtaining positive adaption effects, these methods suffer from two major issues. First, they tend to be fairly unstable - incorrect pseudo labels abruptly emerged may cause a catastrophic impact on the model. Second, they fail to consider the severe class imbalance of fundus images where the foreground (e.g., cup) region is usually very small. This paper aims to address these two issues by proposing the Class-Balanced Mean Teacher (CBMT) model. CBMT addresses the unstable issue by proposing a weak-strong augmented mean teacher learning scheme where only the teacher model generates pseudo labels from weakly augmented images to train a student model that takes strongly augmented images as input. The teacher is updated as the moving average of the instantly trained student, which could be noisy. This prevents the teacher model from being abruptly impacted by incorrect pseudo-labels. For the class imbalance issue, CBMT proposes a novel loss calibration approach to highlight foreground classes according to global statistics. Experiments show that CBMT well addresses these two issues and outperforms existing methods on multiple benchmarks.
PDF Accepted by MICCAI 2023

点此查看论文截图

Unsupervised Accuracy Estimation of Deep Visual Models using Domain-Adaptive Adversarial Perturbation without Source Samples

Authors:JoonHo Lee, Jae Oh Woo, Hankyu Moon, Kwonho Lee

Deploying deep visual models can lead to performance drops due to the discrepancies between source and target distributions. Several approaches leverage labeled source data to estimate target domain accuracy, but accessing labeled source data is often prohibitively difficult due to data confidentiality or resource limitations on serving devices. Our work proposes a new framework to estimate model accuracy on unlabeled target data without access to source data. We investigate the feasibility of using pseudo-labels for accuracy estimation and evolve this idea into adopting recent advances in source-free domain adaptation algorithms. Our approach measures the disagreement rate between the source hypothesis and the target pseudo-labeling function, adapted from the source hypothesis. We mitigate the impact of erroneous pseudo-labels that may arise due to a high ideal joint hypothesis risk by employing adaptive adversarial perturbation on the input of the target model. Our proposed source-free framework effectively addresses the challenging distribution shift scenarios and outperforms existing methods requiring source data and labels for training.
PDF Accepted to ICCV 2023

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录