2023-07-15 更新
Learning Large Margin Sparse Embeddings for Open Set Medical Diagnosis
Authors:Mingyuan Liu, Lu Xu, Jicong Zhang
Fueled by deep learning, computer-aided diagnosis achieves huge advances. However, out of controlled lab environments, algorithms could face multiple challenges. Open set recognition (OSR), as an important one, states that categories unseen in training could appear in testing. In medical fields, it could derive from incompletely collected training datasets and the constantly emerging new or rare diseases. OSR requires an algorithm to not only correctly classify known classes, but also recognize unknown classes and forward them to experts for further diagnosis. To tackle OSR, we assume that known classes could densely occupy small parts of the embedding space and the remaining sparse regions could be recognized as unknowns. Following it, we propose Open Margin Cosine Loss (OMCL) unifying two mechanisms. The former, called Margin Loss with Adaptive Scale (MLAS), introduces angular margin for reinforcing intra-class compactness and inter-class separability, together with an adaptive scaling factor to strengthen the generalization capacity. The latter, called Open-Space Suppression (OSS), opens the classifier by recognizing sparse embedding space as unknowns using proposed feature space descriptors. Besides, since medical OSR is still a nascent field, two publicly available benchmark datasets are proposed for comparison. Extensive ablation studies and feature visualization demonstrate the effectiveness of each design. Compared with state-of-the-art methods, MLAS achieves superior performances, measured by ACC, AUROC, and OSCR.
PDF
点此查看论文截图
Source-Free Open-Set Domain Adaptation for Histopathological Images via Distilling Self-Supervised Vision Transformer
Authors:Guillaume Vray, Devavrat Tomar, Behzad Bozorgtabar, Jean-Philippe Thiran
There is a strong incentive to develop computational pathology models to i) ease the burden of tissue typology annotation from whole slide histological images; ii) transfer knowledge, e.g., tissue class separability from the withheld source domain to the distributionally shifted unlabeled target domain, and simultaneously iii) detect Open Set samples, i.e., unseen novel categories not present in the training source domain. This paper proposes a highly practical setting by addressing the abovementioned challenges in one fell swoop, i.e., source-free Open Set domain adaptation (SF-OSDA), which addresses the situation where a model pre-trained on the inaccessible source dataset can be adapted on the unlabeled target dataset containing Open Set samples. The central tenet of our proposed method is distilling knowledge from a self-supervised vision transformer trained in the target domain. We propose a novel style-based data augmentation used as hard positives for self-training a vision transformer in the target domain, yielding strongly contextualized embedding. Subsequently, semantically similar target images are clustered while the source model provides their corresponding weak pseudo-labels with unreliable confidence. Furthermore, we propose cluster relative maximum logit score (CRMLS) to rectify the confidence of the weak pseudo-labels and compute weighted class prototypes in the contextualized embedding space that are utilized for adapting the source model on the target domain. Our method significantly outperforms the previous methods, including open set detection, test-time adaptation, and SF-OSDA methods, setting the new state-of-the-art on three public histopathological datasets of colorectal cancer (CRC) assessment- Kather-16, Kather-19, and CRCTP. Our code is available at https://github.com/LTS5/Proto-SF-OSDA.
PDF 11 pages
点此查看论文截图
OpenAL: An Efficient Deep Active Learning Framework for Open-Set Pathology Image Classification
Authors:Linhao Qu, Yingfan Ma, Zhiwei Yang, Manning Wang, Zhijian Song
Active learning (AL) is an effective approach to select the most informative samples to label so as to reduce the annotation cost. Existing AL methods typically work under the closed-set assumption, i.e., all classes existing in the unlabeled sample pool need to be classified by the target model. However, in some practical clinical tasks, the unlabeled pool may contain not only the target classes that need to be fine-grainedly classified, but also non-target classes that are irrelevant to the clinical tasks. Existing AL methods cannot work well in this scenario because they tend to select a large number of non-target samples. In this paper, we formulate this scenario as an open-set AL problem and propose an efficient framework, OpenAL, to address the challenge of querying samples from an unlabeled pool with both target class and non-target class samples. Experiments on fine-grained classification of pathology images show that OpenAL can significantly improve the query quality of target class samples and achieve higher performance than current state-of-the-art AL methods. Code is available at https://github.com/miccaiif/OpenAL.
PDF Accepted by MICCAI2023