GAN


2023-07-15 更新

AdAM: Few-Shot Image Generation via Adaptation-Aware Kernel Modulation

Authors:Yunqing Zhao, Keshigeyan Chandrasegaran, Abdollahzadeh Milad, Chao Du, Tianyu Pang, Ruoteng Li, Henghui Ding, Ngai-Man Cheung

Few-shot image generation (FSIG) aims to learn to generate new and diverse images given few (e.g., 10) training samples. Recent work has addressed FSIG by leveraging a GAN pre-trained on a large-scale source domain and adapting it to the target domain with few target samples. Central to recent FSIG methods are knowledge preservation criteria, which select and preserve a subset of source knowledge to the adapted model. However, a major limitation of existing methods is that their knowledge preserving criteria consider only source domain/task and fail to consider target domain/adaptation in selecting source knowledge, casting doubt on their suitability for setups of different proximity between source and target domain. Our work makes two contributions. Firstly, we revisit recent FSIG works and their experiments. We reveal that under setups which assumption of close proximity between source and target domains is relaxed, many existing state-of-the-art (SOTA) methods which consider only source domain in knowledge preserving perform no better than a baseline method. As our second contribution, we propose Adaptation-Aware kernel Modulation (AdAM) for general FSIG of different source-target domain proximity. Extensive experiments show that AdAM consistently achieves SOTA performance in FSIG, including challenging setups where source and target domains are more apart.
PDF need substantial update about the content, experiment and discussion of the paper

点此查看论文截图

IPO-LDM: Depth-aided 360-degree Indoor RGB Panorama Outpainting via Latent Diffusion Model

Authors:Tianhao Wu, Chuanxia Zheng, Tat-Jen Cham

Generating complete 360-degree panoramas from narrow field of view images is ongoing research as omnidirectional RGB data is not readily available. Existing GAN-based approaches face some barriers to achieving higher quality output, and have poor generalization performance over different mask types. In this paper, we present our 360-degree indoor RGB panorama outpainting model using latent diffusion models (LDM), called IPO-LDM. We introduce a new bi-modal latent diffusion structure that utilizes both RGB and depth panoramic data during training, but works surprisingly well to outpaint normal depth-free RGB images during inference. We further propose a novel technique of introducing progressive camera rotations during each diffusion denoising step, which leads to substantial improvement in achieving panorama wraparound consistency. Results show that our IPO-LDM not only significantly outperforms state-of-the-art methods on RGB panorama outpainting, but can also produce multiple and diverse well-structured results for different types of masks.
PDF Project Page:https://sm0kywu.github.io/ipoldm/

点此查看论文截图

NOFA: NeRF-based One-shot Facial Avatar Reconstruction

Authors:Wangbo Yu, Yanbo Fan, Yong Zhang, Xuan Wang, Fei Yin, Yunpeng Bai, Yan-Pei Cao, Ying Shan, Yang Wu, Zhongqian Sun, Baoyuan Wu

3D facial avatar reconstruction has been a significant research topic in computer graphics and computer vision, where photo-realistic rendering and flexible controls over poses and expressions are necessary for many related applications. Recently, its performance has been greatly improved with the development of neural radiance fields (NeRF). However, most existing NeRF-based facial avatars focus on subject-specific reconstruction and reenactment, requiring multi-shot images containing different views of the specific subject for training, and the learned model cannot generalize to new identities, limiting its further applications. In this work, we propose a one-shot 3D facial avatar reconstruction framework that only requires a single source image to reconstruct a high-fidelity 3D facial avatar. For the challenges of lacking generalization ability and missing multi-view information, we leverage the generative prior of 3D GAN and develop an efficient encoder-decoder network to reconstruct the canonical neural volume of the source image, and further propose a compensation network to complement facial details. To enable fine-grained control over facial dynamics, we propose a deformation field to warp the canonical volume into driven expressions. Through extensive experimental comparisons, we achieve superior synthesis results compared to several state-of-the-art methods.
PDF

点此查看论文截图

Diffusion idea exploration for art generation

Authors:Nikhil Verma

Cross-Modal learning tasks have picked up pace in recent times. With plethora of applications in diverse areas, generation of novel content using multiple modalities of data has remained a challenging problem. To address the same, various generative modelling techniques have been proposed for specific tasks. Novel and creative image generation is one important aspect for industrial application which could help as an arm for novel content generation. Techniques proposed previously used Generative Adversarial Network(GAN), autoregressive models and Variational Autoencoders (VAE) for accomplishing similar tasks. These approaches are limited in their capability to produce images guided by either text instructions or rough sketch images decreasing the overall performance of image generator. We used state of the art diffusion models to generate creative art by primarily leveraging text with additional support of rough sketches. Diffusion starts with a pattern of random dots and slowly converts that pattern into a design image using the guiding information fed into the model. Diffusion models have recently outperformed other generative models in image generation tasks using cross modal data as guiding information. The initial experiments for this task of novel image generation demonstrated promising qualitative results.
PDF Report Submitted for degree completion of Master of Science in Applied Computing at University of Toronto

点此查看论文截图

ExFaceGAN: Exploring Identity Directions in GAN’s Learned Latent Space for Synthetic Identity Generation

Authors:Fadi Boutros, Marcel Klemt, Meiling Fang, Arjan Kuijper, Naser Damer

Deep generative models have recently presented impressive results in generating realistic face images of random synthetic identities. To generate multiple samples of a certain synthetic identity, several previous works proposed to disentangle the latent space of GANs by incorporating additional supervision or regularization, enabling the manipulation of certain attributes, e.g. identity, hairstyle, pose, or expression. Most of these works require designing special loss functions and training dedicated network architectures. Others proposed to disentangle specific factors in unconditional pretrained GANs latent spaces to control their output, which also requires supervision by attribute classifiers. Moreover, these attributes are entangled in GAN’s latent space, making it difficult to manipulate them without affecting the identity information. We propose in this work a framework, ExFaceGAN, to disentangle identity information in state-of-the-art pretrained GANs latent spaces, enabling the generation of multiple samples of any synthetic identity. The variations in our generated images are not limited to specific attributes as ExFaceGAN explicitly aims at disentangling identity information, while other visual attributes are randomly drawn from a learned GAN latent space. As an example of the practical benefit of our ExFaceGAN, we empirically prove that data generated by ExFaceGAN can be successfully used to train face recognition models.
PDF Accepted at IJCB 2023

点此查看论文截图

Image Reconstruction using Enhanced Vision Transformer

Authors:Nikhil Verma, Deepkamal Kaur, Lydia Chau

Removing noise from images is a challenging and fundamental problem in the field of computer vision. Images captured by modern cameras are inevitably degraded by noise which limits the accuracy of any quantitative measurements on those images. In this project, we propose a novel image reconstruction framework which can be used for tasks such as image denoising, deblurring or inpainting. The model proposed in this project is based on Vision Transformer (ViT) that takes 2D images as input and outputs embeddings which can be used for reconstructing denoised images. We incorporate four additional optimization techniques in the framework to improve the model reconstruction capability, namely Locality Sensitive Attention (LSA), Shifted Patch Tokenization (SPT), Rotary Position Embeddings (RoPE) and adversarial loss function inspired from Generative Adversarial Networks (GANs). LSA, SPT and RoPE enable the transformer to learn from the dataset more efficiently, while the adversarial loss function enhances the resolution of the reconstructed images. Based on our experiments, the proposed architecture outperforms the benchmark U-Net model by more than 3.5\% structural similarity (SSIM) for the reconstruction tasks of image denoising and inpainting. The proposed enhancements further show an improvement of \textasciitilde5\% SSIM over the benchmark for both tasks.
PDF

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录