2023-07-15 更新
AdAM: Few-Shot Image Generation via Adaptation-Aware Kernel Modulation
Authors:Yunqing Zhao, Keshigeyan Chandrasegaran, Abdollahzadeh Milad, Chao Du, Tianyu Pang, Ruoteng Li, Henghui Ding, Ngai-Man Cheung
Few-shot image generation (FSIG) aims to learn to generate new and diverse images given few (e.g., 10) training samples. Recent work has addressed FSIG by leveraging a GAN pre-trained on a large-scale source domain and adapting it to the target domain with few target samples. Central to recent FSIG methods are knowledge preservation criteria, which select and preserve a subset of source knowledge to the adapted model. However, a major limitation of existing methods is that their knowledge preserving criteria consider only source domain/task and fail to consider target domain/adaptation in selecting source knowledge, casting doubt on their suitability for setups of different proximity between source and target domain. Our work makes two contributions. Firstly, we revisit recent FSIG works and their experiments. We reveal that under setups which assumption of close proximity between source and target domains is relaxed, many existing state-of-the-art (SOTA) methods which consider only source domain in knowledge preserving perform no better than a baseline method. As our second contribution, we propose Adaptation-Aware kernel Modulation (AdAM) for general FSIG of different source-target domain proximity. Extensive experiments show that AdAM consistently achieves SOTA performance in FSIG, including challenging setups where source and target domains are more apart.
PDF need substantial update about the content, experiment and discussion of the paper
点此查看论文截图
Optimal Transport Posterior Alignment for Cross-lingual Semantic Parsing
Authors:Tom Sherborne, Tom Hosking, Mirella Lapata
Cross-lingual semantic parsing transfers parsing capability from a high-resource language (e.g., English) to low-resource languages with scarce training data. Previous work has primarily considered silver-standard data augmentation or zero-shot methods, however, exploiting few-shot gold data is comparatively unexplored. We propose a new approach to cross-lingual semantic parsing by explicitly minimizing cross-lingual divergence between probabilistic latent variables using Optimal Transport. We demonstrate how this direct guidance improves parsing from natural languages using fewer examples and less training. We evaluate our method on two datasets, MTOP and MultiATIS++SQL, establishing state-of-the-art results under a few-shot cross-lingual regime. Ablation studies further reveal that our method improves performance even without parallel input translations. In addition, we show that our model better captures cross-lingual structure in the latent space to improve semantic representation similarity.
PDF Accepted to TACL 2023. Pre-MIT Press publication. 17 pages, 3 figures, 6 tables
点此查看论文截图
Leveraging Multiple Descriptive Features for Robust Few-shot Image Learning
Authors:Zhili Feng, Anna Bair, J. Zico Kolter
Modern image classification is based upon directly predicting model classes via large discriminative networks, making it difficult to assess the intuitive visual features'' that may constitute a classification decision. At the same time, recent works in joint visual language models such as CLIP provide ways to specify natural language descriptions of image classes but typically focus on providing single descriptions for each class. In this work, we demonstrate that an alternative approach, arguably more akin to our understanding of multiple
visual features’’ per class, can also provide compelling performance in the robust few-shot learning setting. In particular, we automatically enumerate multiple visual descriptions of each class — via a large language model (LLM) — then use a vision-image model to translate these descriptions to a set of multiple visual features of each image; we finally use sparse logistic regression to select a relevant subset of these features to classify each image. This both provides an ``intuitive’’ set of relevant features for each class, and in the few-shot learning setting, outperforms standard approaches such as linear probing. When combined with finetuning, we also show that the method is able to outperform existing state-of-the-art finetuning approaches on both in-distribution and out-of-distribution performance.
PDF
点此查看论文截图
One-Shot Pruning for Fast-adapting Pre-trained Models on Devices
Authors:Haiyan Zhao, Guodong Long
Large-scale pre-trained models have been remarkably successful in resolving downstream tasks. Nonetheless, deploying these models on low-capability devices still requires an effective approach, such as model pruning. However, pruning the model from scratch can pose a practical challenge given the limited resources of each downstream task or device. To tackle this issue, we present a scalable one-shot pruning method that leverages pruned knowledge of similar tasks to extract a sub-network from the pre-trained model for a new task. Specifically, we create a score mask using the pruned models of similar tasks to identify task-specific filters/nodes in the pre-trained model for the new task. Based on this mask, we conduct a single round of pruning to extract a suitably-sized sub-network that can quickly adapt to the new task with only a few training iterations. Our experimental analysis demonstrates the effectiveness of the proposed method on the convolutional neural networks (CNNs) and vision transformers (ViT) with various datasets. The proposed method consistently outperforms popular pruning baseline methods in terms of accuracy and efficiency when dealing with diverse downstream tasks with different memory constraints.
PDF
点此查看论文截图
Generative Pretraining in Multimodality
Authors:Quan Sun, Qiying Yu, Yufeng Cui, Fan Zhang, Xiaosong Zhang, Yueze Wang, Hongcheng Gao, Jingjing Liu, Tiejun Huang, Xinlong Wang
We present Emu, a Transformer-based multimodal foundation model, which can seamlessly generate images and texts in multimodal context. This omnivore model can take in any single-modality or multimodal data input indiscriminately (e.g., interleaved image, text and video) through a one-model-for-all autoregressive training process. First, visual signals are encoded into embeddings, and together with text tokens form an interleaved input sequence. Emu is then end-to-end trained with a unified objective of classifying the next text token or regressing the next visual embedding in the multimodal sequence. This versatile multimodality empowers the exploration of diverse pretraining data sources at scale, such as videos with interleaved frames and text, webpages with interleaved images and text, as well as web-scale image-text pairs and video-text pairs. Emu can serve as a generalist multimodal interface for both image-to-text and text-to-image tasks, and supports in-context image and text generation. Across a broad range of zero-shot/few-shot tasks including image captioning, visual question answering, video question answering and text-to-image generation, Emu demonstrates superb performance compared to state-of-the-art large multimodal models. Extended capabilities such as multimodal assistants via instruction tuning are also demonstrated with impressive performance.
PDF Code and Demo: https://github.com/baaivision/Emu
点此查看论文截图
My3DGen: Building Lightweight Personalized 3D Generative Model
Authors:Luchao Qi, Jiaye Wu, Shengze Wang, Soumyadip Sengupta
Our paper presents My3DGen, a practical system for creating a personalized and lightweight 3D generative prior using as few as 10 images. My3DGen can reconstruct multi-view consistent images from an input test image, and generate novel appearances by interpolating between any two images of the same individual. While recent studies have demonstrated the effectiveness of personalized generative priors in producing high-quality 2D portrait reconstructions and syntheses, to the best of our knowledge, we are the first to develop a personalized 3D generative prior. Instead of fine-tuning a large pre-trained generative model with millions of parameters to achieve personalization, we propose a parameter-efficient approach. Our method involves utilizing a pre-trained model with fixed weights as a generic prior, while training a separate personalized prior through low-rank decomposition of the weights in each convolution and fully connected layer. However, parameter-efficient few-shot fine-tuning on its own often leads to overfitting. To address this, we introduce a regularization technique based on symmetry of human faces. This regularization enforces that novel view renderings of a training sample, rendered from symmetric poses, exhibit the same identity. By incorporating this symmetry prior, we enhance the quality of reconstruction and synthesis, particularly for non-frontal (profile) faces. Our final system combines low-rank fine-tuning with symmetry regularization and significantly surpasses the performance of pre-trained models, e.g. EG3D. It introduces only approximately 0.6 million additional parameters per identity compared to 31 million for full finetuning of the original model. As a result, our system achieves a 50-fold reduction in model size without sacrificing the quality of the generated 3D faces. Code will be available at our project page: https://luchaoqi.github.io/my3dgen.
PDF
点此查看论文截图
Diversity-enhancing Generative Network for Few-shot Hypothesis Adaptation
Authors:Ruijiang Dong, Feng Liu, Haoang Chi, Tongliang Liu, Mingming Gong, Gang Niu, Masashi Sugiyama, Bo Han
Generating unlabeled data has been recently shown to help address the few-shot hypothesis adaptation (FHA) problem, where we aim to train a classifier for the target domain with a few labeled target-domain data and a well-trained source-domain classifier (i.e., a source hypothesis), for the additional information of the highly-compatible unlabeled data. However, the generated data of the existing methods are extremely similar or even the same. The strong dependency among the generated data will lead the learning to fail. In this paper, we propose a diversity-enhancing generative network (DEG-Net) for the FHA problem, which can generate diverse unlabeled data with the help of a kernel independence measure: the Hilbert-Schmidt independence criterion (HSIC). Specifically, DEG-Net will generate data via minimizing the HSIC value (i.e., maximizing the independence) among the semantic features of the generated data. By DEG-Net, the generated unlabeled data are more diverse and more effective for addressing the FHA problem. Experimental results show that the DEG-Net outperforms existing FHA baselines and further verifies that generating diverse data plays a vital role in addressing the FHA problem
PDF
点此查看论文截图
Negated Complementary Commonsense using Large Language Models
Authors:Navid Rezaei, Marek Z. Reformat
Larger language models, such as GPT-3, have shown to be excellent in many tasks. However, we demonstrate that out-of-ordinary questions can throw the model off guard. This work focuses on finding answers to negated complementary questions in commonsense scenarios. We illustrate how such questions adversely affect the model responses. We propose a model-agnostic methodology to improve the performance in negated complementary scenarios. Our method outperforms few-shot generation from GPT-3 (by more than 11 points) and, more importantly, highlights the significance of studying the response of large language models in negated complementary questions. The code, data, and experiments are available under: https://github.com/navidre/negated_complementary_commonsense.
PDF Appeared in Natural Language Reasoning and Structured Explanations Workshop (NLRSE) - ACL 2023
点此查看论文截图
mBLIP: Efficient Bootstrapping of Multilingual Vision-LLMs
Authors:Gregor Geigle, Abhay Jain, Radu Timofte, Goran Glavaš
Modular vision-language models (Vision-LLMs) align pretrained image encoders with (pretrained) large language models (LLMs), representing a computationally much more efficient alternative to end-to-end training of large vision-language models from scratch, which is prohibitively expensive for most. Vision-LLMs instead post-hoc condition LLMs to `understand’ the output of an image encoder. With the abundance of readily available high-quality English image-text data as well as monolingual English LLMs, the research focus has been on English-only Vision-LLMs. Multilingual vision-language models are still predominantly obtained via expensive end-to-end pretraining, resulting in comparatively smaller models, trained on limited multilingual image data supplemented with text-only multilingual corpora. In this work, we present mBLIP, the first multilingual Vision-LLM, which we obtain in a computationally efficient manner — on consumer hardware using only a few million training examples — by leveraging a pretrained multilingual LLM. To this end, we \textit{re-align} an image encoder previously tuned to an English LLM to a new, multilingual LLM — for this, we leverage multilingual data from a mix of vision-and-language tasks, which we obtain by machine-translating high-quality English data to 95 languages. On the IGLUE benchmark, mBLIP yields results competitive with state-of-the-art models. Moreover, in image captioning on XM3600, mBLIP (zero-shot) even outperforms PaLI-X (a model with 55B parameters). Compared to these very large multilingual vision-language models trained from scratch, we obtain mBLIP by training orders of magnitude fewer parameters on magnitudes less data. We release our model and code at \url{https://github.com/gregor-ge/mBLIP}.
PDF