Domain Adaptation


2023-07-15 更新

Source-Free Open-Set Domain Adaptation for Histopathological Images via Distilling Self-Supervised Vision Transformer

Authors:Guillaume Vray, Devavrat Tomar, Behzad Bozorgtabar, Jean-Philippe Thiran

There is a strong incentive to develop computational pathology models to i) ease the burden of tissue typology annotation from whole slide histological images; ii) transfer knowledge, e.g., tissue class separability from the withheld source domain to the distributionally shifted unlabeled target domain, and simultaneously iii) detect Open Set samples, i.e., unseen novel categories not present in the training source domain. This paper proposes a highly practical setting by addressing the abovementioned challenges in one fell swoop, i.e., source-free Open Set domain adaptation (SF-OSDA), which addresses the situation where a model pre-trained on the inaccessible source dataset can be adapted on the unlabeled target dataset containing Open Set samples. The central tenet of our proposed method is distilling knowledge from a self-supervised vision transformer trained in the target domain. We propose a novel style-based data augmentation used as hard positives for self-training a vision transformer in the target domain, yielding strongly contextualized embedding. Subsequently, semantically similar target images are clustered while the source model provides their corresponding weak pseudo-labels with unreliable confidence. Furthermore, we propose cluster relative maximum logit score (CRMLS) to rectify the confidence of the weak pseudo-labels and compute weighted class prototypes in the contextualized embedding space that are utilized for adapting the source model on the target domain. Our method significantly outperforms the previous methods, including open set detection, test-time adaptation, and SF-OSDA methods, setting the new state-of-the-art on three public histopathological datasets of colorectal cancer (CRC) assessment- Kather-16, Kather-19, and CRCTP. Our code is available at https://github.com/LTS5/Proto-SF-OSDA.
PDF 11 pages

点此查看论文截图

One-Shot Learning for Periocular Recognition: Exploring the Effect of Domain Adaptation and Data Bias on Deep Representations

Authors:Kevin Hernandez-Diaz, Fernando Alonso-Fernandez, Josef Bigun

One weakness of machine-learning algorithms is the need to train the models for a new task. This presents a specific challenge for biometric recognition due to the dynamic nature of databases and, in some instances, the reliance on subject collaboration for data collection. In this paper, we investigate the behavior of deep representations in widely used CNN models under extreme data scarcity for One-Shot periocular recognition, a biometric recognition task. We analyze the outputs of CNN layers as identity-representing feature vectors. We examine the impact of Domain Adaptation on the network layers’ output for unseen data and evaluate the method’s robustness concerning data normalization and generalization of the best-performing layer. We improved state-of-the-art results that made use of networks trained with biometric datasets with millions of images and fine-tuned for the target periocular dataset by utilizing out-of-the-box CNNs trained for the ImageNet Recognition Challenge and standard computer vision algorithms. For example, for the Cross-Eyed dataset, we could reduce the EER by 67% and 79% (from 1.70% and 3.41% to 0.56% and 0.71%) in the Close-World and Open-World protocols, respectively, for the periocular case. We also demonstrate that traditional algorithms like SIFT can outperform CNNs in situations with limited data or scenarios where the network has not been trained with the test classes like the Open-World mode. SIFT alone was able to reduce the EER by 64% and 71.6% (from 1.7% and 3.41% to 0.6% and 0.97%) for Cross-Eyed in the Close-World and Open-World protocols, respectively, and a reduction of 4.6% (from 3.94% to 3.76%) in the PolyU database for the Open-World and single biometric case.
PDF Submitted preprint to IEE Access

点此查看论文截图

MoP-CLIP: A Mixture of Prompt-Tuned CLIP Models for Domain Incremental Learning

Authors:Julien Nicolas, Florent Chiaroni, Imtiaz Ziko, Ola Ahmad, Christian Desrosiers, Jose Dolz

Despite the recent progress in incremental learning, addressing catastrophic forgetting under distributional drift is still an open and important problem. Indeed, while state-of-the-art domain incremental learning (DIL) methods perform satisfactorily within known domains, their performance largely degrades in the presence of novel domains. This limitation hampers their generalizability, and restricts their scalability to more realistic settings where train and test data are drawn from different distributions. To address these limitations, we present a novel DIL approach based on a mixture of prompt-tuned CLIP models (MoP-CLIP), which generalizes the paradigm of S-Prompting to handle both in-distribution and out-of-distribution data at inference. In particular, at the training stage we model the features distribution of every class in each domain, learning individual text and visual prompts to adapt to a given domain. At inference, the learned distributions allow us to identify whether a given test sample belongs to a known domain, selecting the correct prompt for the classification task, or from an unseen domain, leveraging a mixture of the prompt-tuned CLIP models. Our empirical evaluation reveals the poor performance of existing DIL methods under domain shift, and suggests that the proposed MoP-CLIP performs competitively in the standard DIL settings while outperforming state-of-the-art methods in OOD scenarios. These results demonstrate the superiority of MoP-CLIP, offering a robust and general solution to the problem of domain incremental learning.
PDF 13 pages, 5 figures

点此查看论文截图

PIGEON: Predicting Image Geolocations

Authors:Lukas Haas, Michal Skreta, Silas Alberti

We introduce PIGEON, a multi-task end-to-end system for planet-scale image geolocalization that achieves state-of-the-art performance on both external benchmarks and in human evaluation. Our work incorporates semantic geocell creation with label smoothing, conducts pretraining of a vision transformer on images with geographic information, and refines location predictions with ProtoNets across a candidate set of geocells. The contributions of PIGEON are three-fold: first, we design a semantic geocells creation and splitting algorithm based on open-source data which can be adapted to any geospatial dataset. Second, we show the effectiveness of intra-geocell refinement and the applicability of unsupervised clustering and ProtNets to the task. Finally, we make our pre-trained CLIP transformer model, StreetCLIP, publicly available for use in adjacent domains with applications to fighting climate change and urban and rural scene understanding.
PDF

点此查看论文截图

Diversity-enhancing Generative Network for Few-shot Hypothesis Adaptation

Authors:Ruijiang Dong, Feng Liu, Haoang Chi, Tongliang Liu, Mingming Gong, Gang Niu, Masashi Sugiyama, Bo Han

Generating unlabeled data has been recently shown to help address the few-shot hypothesis adaptation (FHA) problem, where we aim to train a classifier for the target domain with a few labeled target-domain data and a well-trained source-domain classifier (i.e., a source hypothesis), for the additional information of the highly-compatible unlabeled data. However, the generated data of the existing methods are extremely similar or even the same. The strong dependency among the generated data will lead the learning to fail. In this paper, we propose a diversity-enhancing generative network (DEG-Net) for the FHA problem, which can generate diverse unlabeled data with the help of a kernel independence measure: the Hilbert-Schmidt independence criterion (HSIC). Specifically, DEG-Net will generate data via minimizing the HSIC value (i.e., maximizing the independence) among the semantic features of the generated data. By DEG-Net, the generated unlabeled data are more diverse and more effective for addressing the FHA problem. Experimental results show that the DEG-Net outperforms existing FHA baselines and further verifies that generating diverse data plays a vital role in addressing the FHA problem
PDF

点此查看论文截图

Learning Decentralized Partially Observable Mean Field Control for Artificial Collective Behavior

Authors:Kai Cui, Sascha Hauck, Christian Fabian, Heinz Koeppl

Recent reinforcement learning (RL) methods have achieved success in various domains. However, multi-agent RL (MARL) remains a challenge in terms of decentralization, partial observability and scalability to many agents. Meanwhile, collective behavior requires resolution of the aforementioned challenges, and remains of importance to many state-of-the-art applications such as active matter physics, self-organizing systems, opinion dynamics, and biological or robotic swarms. Here, MARL via mean field control (MFC) offers a potential solution to scalability, but fails to consider decentralized and partially observable systems. In this paper, we enable decentralized behavior of agents under partial information by proposing novel models for decentralized partially observable MFC (Dec-POMFC), a broad class of problems with permutation-invariant agents allowing for reduction to tractable single-agent Markov decision processes (MDP) with single-agent RL solution. We provide rigorous theoretical results, including a dynamic programming principle, together with optimality guarantees for Dec-POMFC solutions applied to finite swarms of interest. Algorithmically, we propose Dec-POMFC-based policy gradient methods for MARL via centralized training and decentralized execution, together with policy gradient approximation guarantees. In addition, we improve upon state-of-the-art histogram-based MFC by kernel methods, which is of separate interest also for fully observable MFC. We evaluate numerically on representative collective behavior tasks such as adapted Kuramoto and Vicsek swarming models, being on par with state-of-the-art MARL. Overall, our framework takes a step towards RL-based engineering of artificial collective behavior via MFC.
PDF

点此查看论文截图

A Study on Differentiable Logic and LLMs for EPIC-KITCHENS-100 Unsupervised Domain Adaptation Challenge for Action Recognition 2023

Authors:Yi Cheng, Ziwei Xu, Fen Fang, Dongyun Lin, Hehe Fan, Yongkang Wong, Ying Sun, Mohan Kankanhalli

In this technical report, we present our findings from a study conducted on the EPIC-KITCHENS-100 Unsupervised Domain Adaptation task for Action Recognition. Our research focuses on the innovative application of a differentiable logic loss in the training to leverage the co-occurrence relations between verb and noun, as well as the pre-trained Large Language Models (LLMs) to generate the logic rules for the adaptation to unseen action labels. Specifically, the model’s predictions are treated as the truth assignment of a co-occurrence logic formula to compute the logic loss, which measures the consistency between the predictions and the logic constraints. By using the verb-noun co-occurrence matrix generated from the dataset, we observe a moderate improvement in model performance compared to our baseline framework. To further enhance the model’s adaptability to novel action labels, we experiment with rules generated using GPT-3.5, which leads to a slight decrease in performance. These findings shed light on the potential and challenges of incorporating differentiable logic and LLMs for knowledge extraction in unsupervised domain adaptation for action recognition. Our final submission (entitled `NS-LLM’) achieved the first place in terms of top-1 action recognition accuracy.
PDF Technical report submitted to CVPR 2023 EPIC-Kitchens challenges

点此查看论文截图

GRAN is superior to GraphRNN: node orderings, kernel- and graph embeddings-based metrics for graph generators

Authors:Ousmane Touat, Julian Stier, Pierre-Edouard Portier, Michael Granitzer

A wide variety of generative models for graphs have been proposed. They are used in drug discovery, road networks, neural architecture search, and program synthesis. Generating graphs has theoretical challenges, such as isomorphic representations — evaluating how well a generative model performs is difficult. Which model to choose depending on the application domain? We extensively study kernel-based metrics on distributions of graph invariants and manifold-based and kernel-based metrics in graph embedding space. Manifold-based metrics outperform kernel-based metrics in embedding space. We use these metrics to compare GraphRNN and GRAN, two well-known generative models for graphs, and unveil the influence of node orderings. It shows the superiority of GRAN over GraphRNN - further, our proposed adaptation of GraphRNN with a depth-first search ordering is effective for small-sized graphs. A guideline on good practices regarding dataset selection and node feature initialization is provided. Our work is accompanied by open-source code and reproducible experiments.
PDF Preprint for The 9th International Conference on machine Learning, Optimization and Data science - LOD 2023

点此查看论文截图

Watch Your Pose: Unsupervised Domain Adaption with Pose based Triplet Selection for Gait Recognition

Authors:Gavriel Habib, Noa Barzilay, Or Shimshi, Rami Ben-Ari, Nir Darshan

Gait Recognition is a computer vision task aiming to identify people by their walking patterns. Existing methods show impressive results on individual datasets but lack the ability to generalize to unseen scenarios. Unsupervised Domain Adaptation (UDA) tries to adapt a model, pre-trained in a supervised manner on a source domain, to an unlabelled target domain. UDA for Gait Recognition is still in its infancy and existing works proposed solutions to limited scenarios. In this paper, we reveal a fundamental phenomenon in adaptation of gait recognition models, in which the target domain is biased to pose-based features rather than identity features, causing a significant performance drop in the identification task. We suggest Gait Orientation-based method for Unsupervised Domain Adaptation (GOUDA) to reduce this bias. To this end, we present a novel Triplet Selection algorithm with a curriculum learning framework, aiming to adapt the embedding space by pushing away samples of similar poses and bringing closer samples of different poses. We provide extensive experiments on four widely-used gait datasets, CASIA-B, OU-MVLP, GREW, and Gait3D, and on three backbones, GaitSet, GaitPart, and GaitGL, showing the superiority of our proposed method over prior works.
PDF

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录