2023-07-15 更新
IPO-LDM: Depth-aided 360-degree Indoor RGB Panorama Outpainting via Latent Diffusion Model
Authors:Tianhao Wu, Chuanxia Zheng, Tat-Jen Cham
Generating complete 360-degree panoramas from narrow field of view images is ongoing research as omnidirectional RGB data is not readily available. Existing GAN-based approaches face some barriers to achieving higher quality output, and have poor generalization performance over different mask types. In this paper, we present our 360-degree indoor RGB panorama outpainting model using latent diffusion models (LDM), called IPO-LDM. We introduce a new bi-modal latent diffusion structure that utilizes both RGB and depth panoramic data during training, but works surprisingly well to outpaint normal depth-free RGB images during inference. We further propose a novel technique of introducing progressive camera rotations during each diffusion denoising step, which leads to substantial improvement in achieving panorama wraparound consistency. Results show that our IPO-LDM not only significantly outperforms state-of-the-art methods on RGB panorama outpainting, but can also produce multiple and diverse well-structured results for different types of masks.
PDF Project Page:https://sm0kywu.github.io/ipoldm/
点此查看论文截图
Back to Optimization: Diffusion-based Zero-Shot 3D Human Pose Estimation
Authors:Zhongyu Jiang, Zhuoran Zhou, Lei Li, Wenhao Chai, Cheng-Yen Yang, Jenq-Neng Hwang
Learning-based methods have dominated the 3D human pose estimation (HPE) tasks with significantly better performance in most benchmarks than traditional optimization-based methods. Nonetheless, 3D HPE in the wild is still the biggest challenge of learning-based models, whether with 2D-3D lifting, image-to-3D, or diffusion-based methods, since the trained networks implicitly learn camera intrinsic parameters and domain-based 3D human pose distributions and estimate poses by statistical average. On the other hand, the optimization-based methods estimate results case-by-case, which can predict more diverse and sophisticated human poses in the wild. By combining the advantages of optimization-based and learning-based methods, we propose the Zero-shot Diffusion-based Optimization (ZeDO) pipeline for 3D HPE to solve the problem of cross-domain and in-the-wild 3D HPE. Our multi-hypothesis ZeDO achieves state-of-the-art (SOTA) performance on Human3.6M as minMPJPE $51.4$mm without training with any 2D-3D or image-3D pairs. Moreover, our single-hypothesis ZeDO achieves SOTA performance on 3DPW dataset with PA-MPJPE $42.6$mm on cross-dataset evaluation, which even outperforms learning-based methods trained on 3DPW.
PDF
点此查看论文截图
Stimulating the Diffusion Model for Image Denoising via Adaptive Embedding and Ensembling
Authors:Tong Li, Hansen Feng, Lizhi Wang, Zhiwei Xiong, Hua Huang
Image denoising is a fundamental problem in computational photography, where achieving high-quality perceptual performance with low distortion is highly demanding. Current methods either struggle with perceptual performance or suffer from significant distortion. Recently, the emerging diffusion model achieves state-of-the-art performance in various tasks, and its denoising mechanism demonstrates great potential for image denoising. However, stimulating diffusion models for image denoising is not straightforward and requires solving several critical problems. On the one hand, the input inconsistency hinders the connection of diffusion models and image denoising. On the other hand, the content inconsistency between the generated image and the desired denoised image introduces additional distortion. To tackle these problems, we present a novel strategy called Diffusion Model for Image Denoising (DMID) by understanding and rethinking the diffusion model from a denoising perspective. Our DMID strategy includes an adaptive embedding method that embeds the noisy image into a pre-trained diffusion model, and an adaptive ensembling method that reduces distortion in the denoised image. Our DMID strategy achieves state-of-the-art performance on all distortion-based and perceptual metrics, for both Gaussian and real-world image denoising.
PDF 10 pages,7 figures
点此查看论文截图
Measuring the Success of Diffusion Models at Imitating Human Artists
Authors:Stephen Casper, Zifan Guo, Shreya Mogulothu, Zachary Marinov, Chinmay Deshpande, Rui-Jie Yew, Zheng Dai, Dylan Hadfield-Menell
Modern diffusion models have set the state-of-the-art in AI image generation. Their success is due, in part, to training on Internet-scale data which often includes copyrighted work. This prompts questions about the extent to which these models learn from, imitate, or copy the work of human artists. This work suggests that tying copyright liability to the capabilities of the model may be useful given the evolving ecosystem of generative models. Specifically, much of the legal analysis of copyright and generative systems focuses on the use of protected data for training. As a result, the connections between data, training, and the system are often obscured. In our approach, we consider simple image classification techniques to measure a model’s ability to imitate specific artists. Specifically, we use Contrastive Language-Image Pretrained (CLIP) encoders to classify images in a zero-shot fashion. Our process first prompts a model to imitate a specific artist. Then, we test whether CLIP can be used to reclassify the artist (or the artist’s work) from the imitation. If these tests match the imitation back to the original artist, this suggests the model can imitate that artist’s expression. Our approach is simple and quantitative. Furthermore, it uses standard techniques and does not require additional training. We demonstrate our approach with an audit of Stable Diffusion’s capacity to imitate 70 professional digital artists with copyrighted work online. When Stable Diffusion is prompted to imitate an artist from this set, we find that the artist can be identified from the imitation with an average accuracy of 81.0%. Finally, we also show that a sample of the artist’s work can be matched to these imitation images with a high degree of statistical reliability. Overall, these results suggest that Stable Diffusion is broadly successful at imitating individual human artists.
PDF Accepted to the 1 st Workshop on Generative AI and Law
点此查看论文截图
Timbre transfer using image-to-image denoising diffusion models
Authors:Luca Comanducci, Fabio Antonacci, Augusto Sarti
Timbre transfer techniques aim at converting the sound of a musical piece generated by one instrument into the same one as if it was played by another instrument, while maintaining as much as possible the content in terms of musical characteristics such as melody and dynamics. Following their recent breakthroughs in deep learning-based generation, we apply Denoising Diffusion Models (DDMs) to perform timbre transfer. Specifically, we apply the recently proposed Denoising Diffusion Implicit Models (DDIMs) that enable to accelerate the sampling procedure. Inspired by the recent application of DDMs to image translation problems we formulate the timbre transfer task similarly, by first converting the audio tracks into log mel spectrograms and by conditioning the generation of the desired timbre spectrogram through the input timbre spectrogram. We perform both one-to-one and many-to-many timbre transfer, by converting audio waveforms containing only single instruments and multiple instruments, respectively. We compare the proposed technique with existing state-of-the-art methods both through listening tests and objective measures in order to demonstrate the effectiveness of the proposed model.
PDF
点此查看论文截图
AnimateDiff: Animate Your Personalized Text-to-Image Diffusion Models without Specific Tuning
Authors:Yuwei Guo, Ceyuan Yang, Anyi Rao, Yaohui Wang, Yu Qiao, Dahua Lin, Bo Dai
With the advance of text-to-image models (e.g., Stable Diffusion) and corresponding personalization techniques such as DreamBooth and LoRA, everyone can manifest their imagination into high-quality images at an affordable cost. Subsequently, there is a great demand for image animation techniques to further combine generated static images with motion dynamics. In this report, we propose a practical framework to animate most of the existing personalized text-to-image models once and for all, saving efforts in model-specific tuning. At the core of the proposed framework is to insert a newly initialized motion modeling module into the frozen text-to-image model and train it on video clips to distill reasonable motion priors. Once trained, by simply injecting this motion modeling module, all personalized versions derived from the same base T2I readily become text-driven models that produce diverse and personalized animated images. We conduct our evaluation on several public representative personalized text-to-image models across anime pictures and realistic photographs, and demonstrate that our proposed framework helps these models generate temporally smooth animation clips while preserving the domain and diversity of their outputs. Code and pre-trained weights will be publicly available at https://animatediff.github.io/ .
PDF Project page: https://animatediff.github.io/
点此查看论文截图
Divide, Evaluate, and Refine: Evaluating and Improving Text-to-Image Alignment with Iterative VQA Feedback
Authors:Jaskirat Singh, Liang Zheng
The field of text-conditioned image generation has made unparalleled progress with the recent advent of latent diffusion models. While remarkable, as the complexity of given text input increases, the state-of-the-art diffusion models may still fail in generating images which accurately convey the semantics of the given prompt. Furthermore, it has been observed that such misalignments are often left undetected by pretrained multi-modal models such as CLIP. To address these problems, in this paper we explore a simple yet effective decompositional approach towards both evaluation and improvement of text-to-image alignment. In particular, we first introduce a Decompositional-Alignment-Score which given a complex prompt decomposes it into a set of disjoint assertions. The alignment of each assertion with generated images is then measured using a VQA model. Finally, alignment scores for different assertions are combined aposteriori to give the final text-to-image alignment score. Experimental analysis reveals that the proposed alignment metric shows significantly higher correlation with human ratings as opposed to traditional CLIP, BLIP scores. Furthermore, we also find that the assertion level alignment scores provide a useful feedback which can then be used in a simple iterative procedure to gradually increase the expression of different assertions in the final image outputs. Human user studies indicate that the proposed approach surpasses previous state-of-the-art by 8.7% in overall text-to-image alignment accuracy. Project page for our paper is available at https://1jsingh.github.io/divide-evaluate-and-refine
PDF
点此查看论文截图
Articulated 3D Head Avatar Generation using Text-to-Image Diffusion Models
Authors:Alexander W. Bergman, Wang Yifan, Gordon Wetzstein
The ability to generate diverse 3D articulated head avatars is vital to a plethora of applications, including augmented reality, cinematography, and education. Recent work on text-guided 3D object generation has shown great promise in addressing these needs. These methods directly leverage pre-trained 2D text-to-image diffusion models to generate 3D-multi-view-consistent radiance fields of generic objects. However, due to the lack of geometry and texture priors, these methods have limited control over the generated 3D objects, making it difficult to operate inside a specific domain, e.g., human heads. In this work, we develop a new approach to text-guided 3D head avatar generation to address this limitation. Our framework directly operates on the geometry and texture of an articulable 3D morphable model (3DMM) of a head, and introduces novel optimization procedures to update the geometry and texture while keeping the 2D and 3D facial features aligned. The result is a 3D head avatar that is consistent with the text description and can be readily articulated using the deformation model of the 3DMM. We show that our diffusion-based articulated head avatars outperform state-of-the-art approaches for this task. The latter are typically based on CLIP, which is known to provide limited diversity of generation and accuracy for 3D object generation.
PDF Project website: http://www.computationalimaging.org/publications/articulated-diffusion/
点此查看论文截图
Diffusion idea exploration for art generation
Authors:Nikhil Verma
Cross-Modal learning tasks have picked up pace in recent times. With plethora of applications in diverse areas, generation of novel content using multiple modalities of data has remained a challenging problem. To address the same, various generative modelling techniques have been proposed for specific tasks. Novel and creative image generation is one important aspect for industrial application which could help as an arm for novel content generation. Techniques proposed previously used Generative Adversarial Network(GAN), autoregressive models and Variational Autoencoders (VAE) for accomplishing similar tasks. These approaches are limited in their capability to produce images guided by either text instructions or rough sketch images decreasing the overall performance of image generator. We used state of the art diffusion models to generate creative art by primarily leveraging text with additional support of rough sketches. Diffusion starts with a pattern of random dots and slowly converts that pattern into a design image using the guiding information fed into the model. Diffusion models have recently outperformed other generative models in image generation tasks using cross modal data as guiding information. The initial experiments for this task of novel image generation demonstrated promising qualitative results.
PDF Report Submitted for degree completion of Master of Science in Applied Computing at University of Toronto
点此查看论文截图
AvatarFusion: Zero-shot Generation of Clothing-Decoupled 3D Avatars Using 2D Diffusion
Authors:Shuo Huang, Zongxin Yang, Liangting Li, Yi Yang, Jia Jia
Large-scale pre-trained vision-language models allow for the zero-shot text-based generation of 3D avatars. The previous state-of-the-art method utilized CLIP to supervise neural implicit models that reconstructed a human body mesh. However, this approach has two limitations. Firstly, the lack of avatar-specific models can cause facial distortion and unrealistic clothing in the generated avatars. Secondly, CLIP only provides optimization direction for the overall appearance, resulting in less impressive results. To address these limitations, we propose AvatarFusion, the first framework to use a latent diffusion model to provide pixel-level guidance for generating human-realistic avatars while simultaneously segmenting clothing from the avatar’s body. AvatarFusion includes the first clothing-decoupled neural implicit avatar model that employs a novel Dual Volume Rendering strategy to render the decoupled skin and clothing sub-models in one space. We also introduce a novel optimization method, called Pixel-Semantics Difference-Sampling (PS-DS), which semantically separates the generation of body and clothes, and generates a variety of clothing styles. Moreover, we establish the first benchmark for zero-shot text-to-avatar generation. Our experimental results demonstrate that our framework outperforms previous approaches, with significant improvements observed in all metrics. Additionally, since our model is clothing-decoupled, we can exchange the clothes of avatars. Code will be available on Github.
PDF
点此查看论文截图
HyperDreamBooth: HyperNetworks for Fast Personalization of Text-to-Image Models
Authors:Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Wei Wei, Tingbo Hou, Yael Pritch, Neal Wadhwa, Michael Rubinstein, Kfir Aberman
Personalization has emerged as a prominent aspect within the field of generative AI, enabling the synthesis of individuals in diverse contexts and styles, while retaining high-fidelity to their identities. However, the process of personalization presents inherent challenges in terms of time and memory requirements. Fine-tuning each personalized model needs considerable GPU time investment, and storing a personalized model per subject can be demanding in terms of storage capacity. To overcome these challenges, we propose HyperDreamBooth-a hypernetwork capable of efficiently generating a small set of personalized weights from a single image of a person. By composing these weights into the diffusion model, coupled with fast finetuning, HyperDreamBooth can generate a person’s face in various contexts and styles, with high subject details while also preserving the model’s crucial knowledge of diverse styles and semantic modifications. Our method achieves personalization on faces in roughly 20 seconds, 25x faster than DreamBooth and 125x faster than Textual Inversion, using as few as one reference image, with the same quality and style diversity as DreamBooth. Also our method yields a model that is 10000x smaller than a normal DreamBooth model. Project page: https://hyperdreambooth.github.io
PDF project page: https://hyperdreambooth.github.io