无监督/半监督/对比学习


2023-07-08 更新

GraSS: Contrastive Learning with Gradient Guided Sampling Strategy for Remote Sensing Image Semantic Segmentation

Authors:Zhaoyang Zhang, Zhen Ren, Chao Tao, Yunsheng Zhang, Chengli Peng, Haifeng Li

Self-supervised contrastive learning (SSCL) has achieved significant milestones in remote sensing image (RSI) understanding. Its essence lies in designing an unsupervised instance discrimination pretext task to extract image features from a large number of unlabeled images that are beneficial for downstream tasks. However, existing instance discrimination based SSCL suffer from two limitations when applied to the RSI semantic segmentation task: 1) Positive sample confounding issue; 2) Feature adaptation bias. It introduces a feature adaptation bias when applied to semantic segmentation tasks that require pixel-level or object-level features. In this study, We observed that the discrimination information can be mapped to specific regions in RSI through the gradient of unsupervised contrastive loss, these specific regions tend to contain singular ground objects. Based on this, we propose contrastive learning with Gradient guided Sampling Strategy (GraSS) for RSI semantic segmentation. GraSS consists of two stages: Instance Discrimination warm-up (ID warm-up) and Gradient guided Sampling contrastive training (GS training). The ID warm-up aims to provide initial discrimination information to the contrastive loss gradients. The GS training stage aims to utilize the discrimination information contained in the contrastive loss gradients and adaptively select regions in RSI patches that contain more singular ground objects, in order to construct new positive and negative samples. Experimental results on three open datasets demonstrate that GraSS effectively enhances the performance of SSCL in high-resolution RSI semantic segmentation. Compared to seven baseline methods from five different types of SSCL, GraSS achieves an average improvement of 1.57\% and a maximum improvement of 3.58\% in terms of mean intersection over the union. The source code is available at https://github.com/GeoX-Lab/GraSS
PDF there are some errors

点此查看论文截图

Training Energy-Based Models with Diffusion Contrastive Divergences

Authors:Weijian Luo, Hao Jiang, Tianyang Hu, Jiacheng Sun, Zhenguo Li, Zhihua Zhang

Energy-Based Models (EBMs) have been widely used for generative modeling. Contrastive Divergence (CD), a prevailing training objective for EBMs, requires sampling from the EBM with Markov Chain Monte Carlo methods (MCMCs), which leads to an irreconcilable trade-off between the computational burden and the validity of the CD. Running MCMCs till convergence is computationally intensive. On the other hand, short-run MCMC brings in an extra non-negligible parameter gradient term that is difficult to handle. In this paper, we provide a general interpretation of CD, viewing it as a special instance of our proposed Diffusion Contrastive Divergence (DCD) family. By replacing the Langevin dynamic used in CD with other EBM-parameter-free diffusion processes, we propose a more efficient divergence. We show that the proposed DCDs are both more computationally efficient than the CD and are not limited to a non-negligible gradient term. We conduct intensive experiments, including both synthesis data modeling and high-dimensional image denoising and generation, to show the advantages of the proposed DCDs. On the synthetic data learning and image denoising experiments, our proposed DCD outperforms CD by a large margin. In image generation experiments, the proposed DCD is capable of training an energy-based model for generating the Celab-A $32\times 32$ dataset, which is comparable to existing EBMs.
PDF

点此查看论文截图

Synchronous Image-Label Diffusion Probability Model with Application to Stroke Lesion Segmentation on Non-contrast CT

Authors:Jianhai Zhang, Tonghua Wan, Ethan MacDonald, Aravind Ganesh, Qiu Wu

Stroke lesion volume is a key radiologic measurement for assessing the prognosis of Acute Ischemic Stroke (AIS) patients, which is challenging to be automatically measured on Non-Contrast CT (NCCT) scans. Recent diffusion probabilistic models have shown potentials of being used for image segmentation. In this paper, a novel Synchronous image-label Diffusion Probability Model (SDPM) is proposed for stroke lesion segmentation on NCCT using Markov diffusion process. The proposed SDPM is fully based on a Latent Variable Model (LVM), offering a complete probabilistic elaboration. An additional net-stream, parallel with a noise prediction stream, is introduced to obtain initial noisy label estimates for efficiently inferring the final labels. By optimizing the specified variational boundaries, the trained model can infer multiple label estimates for reference given the input images with noises. The proposed model was assessed on three stroke lesion datasets including one public and two private datasets. Compared to several U-net and transformer-based segmentation methods, our proposed SDPM model is able to achieve state-of-the-art performance. The code is publicly available.
PDF

点此查看论文截图

Multi-Similarity Contrastive Learning

Authors:Emily Mu, John Guttag, Maggie Makar

Given a similarity metric, contrastive methods learn a representation in which examples that are similar are pushed together and examples that are dissimilar are pulled apart. Contrastive learning techniques have been utilized extensively to learn representations for tasks ranging from image classification to caption generation. However, existing contrastive learning approaches can fail to generalize because they do not take into account the possibility of different similarity relations. In this paper, we propose a novel multi-similarity contrastive loss (MSCon), that learns generalizable embeddings by jointly utilizing supervision from multiple metrics of similarity. Our method automatically learns contrastive similarity weightings based on the uncertainty in the corresponding similarity, down-weighting uncertain tasks and leading to better out-of-domain generalization to new tasks. We show empirically that networks trained with MSCon outperform state-of-the-art baselines on in-domain and out-of-domain settings.
PDF

点此查看论文截图

Semi-supervised Domain Adaptive Medical Image Segmentation through Consistency Regularized Disentangled Contrastive Learning

Authors:Hritam Basak, Zhaozheng Yin

Although unsupervised domain adaptation (UDA) is a promising direction to alleviate domain shift, they fall short of their supervised counterparts. In this work, we investigate relatively less explored semi-supervised domain adaptation (SSDA) for medical image segmentation, where access to a few labeled target samples can improve the adaptation performance substantially. Specifically, we propose a two-stage training process. First, an encoder is pre-trained in a self-learning paradigm using a novel domain-content disentangled contrastive learning (CL) along with a pixel-level feature consistency constraint. The proposed CL enforces the encoder to learn discriminative content-specific but domain-invariant semantics on a global scale from the source and target images, whereas consistency regularization enforces the mining of local pixel-level information by maintaining spatial sensitivity. This pre-trained encoder, along with a decoder, is further fine-tuned for the downstream task, (i.e. pixel-level segmentation) using a semi-supervised setting. Furthermore, we experimentally validate that our proposed method can easily be extended for UDA settings, adding to the superiority of the proposed strategy. Upon evaluation on two domain adaptive image segmentation tasks, our proposed method outperforms the SoTA methods, both in SSDA and UDA settings. Code is available at https://github.com/hritam-98/GFDA-disentangled
PDF Paper accepted at MICCAI 2023

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录