2023-07-08 更新
VoxWatch: An open-set speaker recognition benchmark on VoxCeleb
Authors:Raghuveer Peri, Seyed Omid Sadjadi, Daniel Garcia-Romero
Despite its broad practical applications such as in fraud prevention, open-set speaker identification (OSI) has received less attention in the speaker recognition community compared to speaker verification (SV). OSI deals with determining if a test speech sample belongs to a speaker from a set of pre-enrolled individuals (in-set) or if it is from an out-of-set speaker. In addition to the typical challenges associated with speech variability, OSI is prone to the “false-alarm problem”; as the size of the in-set speaker population (a.k.a watchlist) grows, the out-of-set scores become larger, leading to increased false alarm rates. This is in particular challenging for applications in financial institutions and border security where the watchlist size is typically of the order of several thousand speakers. Therefore, it is important to systematically quantify the false-alarm problem, and develop techniques that alleviate the impact of watchlist size on detection performance. Prior studies on this problem are sparse, and lack a common benchmark for systematic evaluations. In this paper, we present the first public benchmark for OSI, developed using the VoxCeleb dataset. We quantify the effect of the watchlist size and speech duration on the watchlist-based speaker detection task using three strong neural network based systems. In contrast to the findings from prior research, we show that the commonly adopted adaptive score normalization is not guaranteed to improve the performance for this task. On the other hand, we show that score calibration and score fusion, two other commonly used techniques in SV, result in significant improvements in OSI performance.
PDF 8 pages
点此查看论文截图
Don’t Stop Self-Supervision: Accent Adaptation of Speech Representations via Residual Adapters
Authors:Anshu Bhatia, Sanchit Sinha, Saket Dingliwal, Karthik Gopalakrishnan, Sravan Bodapati, Katrin Kirchhoff
Speech representations learned in a self-supervised fashion from massive unlabeled speech corpora have been adapted successfully toward several downstream tasks. However, such representations may be skewed toward canonical data characteristics of such corpora and perform poorly on atypical, non-native accented speaker populations. With the state-of-the-art HuBERT model as a baseline, we propose and investigate self-supervised adaptation of speech representations to such populations in a parameter-efficient way via training accent-specific residual adapters. We experiment with 4 accents and choose automatic speech recognition (ASR) as the downstream task of interest. We obtain strong word error rate reductions (WERR) over HuBERT-large for all 4 accents, with a mean WERR of 22.7% with accent-specific adapters and a mean WERR of 25.1% if the entire encoder is accent-adapted. While our experiments utilize HuBERT and ASR as the downstream task, our proposed approach is both model and task-agnostic.
PDF
点此查看论文截图
ContextSpeech: Expressive and Efficient Text-to-Speech for Paragraph Reading
Authors:Yujia Xiao, Shaofei Zhang, Xi Wang, Xu Tan, Lei He, Sheng Zhao, Frank K. Soong, Tan Lee
While state-of-the-art Text-to-Speech systems can generate natural speech of very high quality at sentence level, they still meet great challenges in speech generation for paragraph / long-form reading. Such deficiencies are due to i) ignorance of cross-sentence contextual information, and ii) high computation and memory cost for long-form synthesis. To address these issues, this work develops a lightweight yet effective TTS system, ContextSpeech. Specifically, we first design a memory-cached recurrence mechanism to incorporate global text and speech context into sentence encoding. Then we construct hierarchically-structured textual semantics to broaden the scope for global context enhancement. Additionally, we integrate linearized self-attention to improve model efficiency. Experiments show that ContextSpeech significantly improves the voice quality and prosody expressiveness in paragraph reading with competitive model efficiency. Audio samples are available at: https://contextspeech.github.io/demo/
PDF 5 pages, 4 figures, accepted by INTERSPEECH 2023
点此查看论文截图
Boosting Norwegian Automatic Speech Recognition
Authors:Javier de la Rosa, Rolv-Arild Braaten, Per Egil Kummervold, Freddy Wetjen, Svein Arne Brygfjeld
In this paper, we present several baselines for automatic speech recognition (ASR) models for the two official written languages in Norway: Bokm{\aa}l and Nynorsk. We compare the performance of models of varying sizes and pre-training approaches on multiple Norwegian speech datasets. Additionally, we measure the performance of these models against previous state-of-the-art ASR models, as well as on out-of-domain datasets. We improve the state of the art on the Norwegian Parliamentary Speech Corpus (NPSC) from a word error rate (WER) of 17.10\% to 7.60\%, with models achieving 5.81\% for Bokm{\aa}l and 11.54\% for Nynorsk. We also discuss the challenges and potential solutions for further improving ASR models for Norwegian.
PDF 10 pages, 10 figures. Published as Proceedings NoDaLiDa 2023, pages 555—564
点此查看论文截图
Disentanglement in a GAN for Unconditional Speech Synthesis
Authors:Matthew Baas, Herman Kamper
Can we develop a model that can synthesize realistic speech directly from a latent space, without explicit conditioning? Despite several efforts over the last decade, previous adversarial and diffusion-based approaches still struggle to achieve this, even on small-vocabulary datasets. To address this, we propose AudioStyleGAN (ASGAN) — a generative adversarial network for unconditional speech synthesis tailored to learn a disentangled latent space. Building upon the StyleGAN family of image synthesis models, ASGAN maps sampled noise to a disentangled latent vector which is then mapped to a sequence of audio features so that signal aliasing is suppressed at every layer. To successfully train ASGAN, we introduce a number of new techniques, including a modification to adaptive discriminator augmentation which probabilistically skips discriminator updates. We apply it on the small-vocabulary Google Speech Commands digits dataset, where it achieves state-of-the-art results in unconditional speech synthesis. It is also substantially faster than existing top-performing diffusion models. We confirm that ASGAN’s latent space is disentangled: we demonstrate how simple linear operations in the space can be used to perform several tasks unseen during training. Specifically, we perform evaluations in voice conversion, speech enhancement, speaker verification, and keyword classification. Our work indicates that GANs are still highly competitive in the unconditional speech synthesis landscape, and that disentangled latent spaces can be used to aid generalization to unseen tasks. Code, models, samples: https://github.com/RF5/simple-asgan/
PDF 12 pages, 5 tables, 4 figures. Submitted to IEEE TASLP. arXiv admin note: substantial text overlap with arXiv:2210.05271
点此查看论文截图
Align With Purpose: Optimize Desired Properties in CTC Models with a General Plug-and-Play Framework
Authors:Eliya Segev, Maya Alroy, Ronen Katsir, Noam Wies, Ayana Shenhav, Yael Ben-Oren, David Zar, Oren Tadmor, Jacob Bitterman, Amnon Shashua, Tal Rosenwein
Connectionist Temporal Classification (CTC) is a widely used criterion for training supervised sequence-to-sequence (seq2seq) models. It enables learning the relations between input and output sequences, termed alignments, by marginalizing over perfect alignments (that yield the ground truth), at the expense of imperfect alignments. This binary differentiation of perfect and imperfect alignments falls short of capturing other essential alignment properties that hold significance in other real-world applications. Here we propose $\textit{Align With Purpose}$, a $\textbf{general Plug-and-Play framework}$ for enhancing a desired property in models trained with the CTC criterion. We do that by complementing the CTC with an additional loss term that prioritizes alignments according to a desired property. Our method does not require any intervention in the CTC loss function, enables easy optimization of a variety of properties, and allows differentiation between both perfect and imperfect alignments. We apply our framework in the domain of Automatic Speech Recognition (ASR) and show its generality in terms of property selection, architectural choice, and scale of training dataset (up to 280,000 hours). To demonstrate the effectiveness of our framework, we apply it to two unrelated properties: emission time and word error rate (WER). For the former, we report an improvement of up to 570ms in latency optimization with a minor reduction in WER, and for the latter, we report a relative improvement of 4.5% WER over the baseline models. To the best of our knowledge, these applications have never been demonstrated to work on a scale of data as large as ours. Notably, our method can be implemented using only a few lines of code, and can be extended to other alignment-free loss functions and to domains other than ASR.
PDF
点此查看论文截图
Online Hybrid CTC/Attention End-to-End Automatic Speech Recognition Architecture
Authors:Haoran Miao, Gaofeng Cheng, Pengyuan Zhang, Yonghong Yan
Recently, there has been increasing progress in end-to-end automatic speech recognition (ASR) architecture, which transcribes speech to text without any pre-trained alignments. One popular end-to-end approach is the hybrid Connectionist Temporal Classification (CTC) and attention (CTC/attention) based ASR architecture. However, how to deploy hybrid CTC/attention systems for online speech recognition is still a non-trivial problem. This article describes our proposed online hybrid CTC/attention end-to-end ASR architecture, which replaces all the offline components of conventional CTC/attention ASR architecture with their corresponding streaming components. Firstly, we propose stable monotonic chunk-wise attention (sMoChA) to stream the conventional global attention, and further propose monotonic truncated attention (MTA) to simplify sMoChA and solve the training-and-decoding mismatch problem of sMoChA. Secondly, we propose truncated CTC (T-CTC) prefix score to stream CTC prefix score calculation. Thirdly, we design dynamic waiting joint decoding (DWJD) algorithm to dynamically collect the predictions of CTC and attention in an online manner. Finally, we use latency-controlled bidirectional long short-term memory (LC-BLSTM) to stream the widely-used offline bidirectional encoder network. Experiments with LibriSpeech English and HKUST Mandarin tasks demonstrate that, compared with the offline CTC/attention model, our proposed online CTC/attention model improves the real time factor in human-computer interaction services and maintains its performance with moderate degradation. To the best of our knowledge, this is the first work to provide the full-stack online solution for CTC/attention end-to-end ASR architecture.
PDF