2023-07-08 更新
A denoised Mean Teacher for domain adaptive point cloud registration
Authors:Alexander Bigalke, Mattias P. Heinrich
Point cloud-based medical registration promises increased computational efficiency, robustness to intensity shifts, and anonymity preservation but is limited by the inefficacy of unsupervised learning with similarity metrics. Supervised training on synthetic deformations is an alternative but, in turn, suffers from the domain gap to the real domain. In this work, we aim to tackle this gap through domain adaptation. Self-training with the Mean Teacher is an established approach to this problem but is impaired by the inherent noise of the pseudo labels from the teacher. As a remedy, we present a denoised teacher-student paradigm for point cloud registration, comprising two complementary denoising strategies. First, we propose to filter pseudo labels based on the Chamfer distances of teacher and student registrations, thus preventing detrimental supervision by the teacher. Second, we make the teacher dynamically synthesize novel training pairs with noise-free labels by warping its moving inputs with the predicted deformations. Evaluation is performed for inhale-to-exhale registration of lung vessel trees on the public PVT dataset under two domain shifts. Our method surpasses the baseline Mean Teacher by 13.5/62.8%, consistently outperforms diverse competitors, and sets a new state-of-the-art accuracy (TRE=2.31mm). Code is available at https://github.com/multimodallearning/denoised_mt_pcd_reg.
PDF early accepted at MICCAI 2023; corrected confused reference
点此查看论文截图
SMILE: Evaluation and Domain Adaptation for Social Media Language Understanding
Authors:Vasilisa Bashlovkina, Riley Matthews, Zhaobin Kuang, Simon Baumgartner, Michael Bendersky
We study the ability of transformer-based language models (LMs) to understand social media language. Social media (SM) language is distinct from standard written language, yet existing benchmarks fall short of capturing LM performance in this socially, economically, and politically important domain. We quantify the degree to which social media language differs from conventional language and conclude that the difference is significant both in terms of token distribution and rate of linguistic shift. Next, we introduce a new benchmark for Social MedIa Language Evaluation (SMILE) that covers four SM platforms and eleven tasks. Finally, we show that learning a tokenizer and pretraining on a mix of social media and conventional language yields an LM that outperforms the best similar-sized alternative by 4.2 points on the overall SMILE score.
PDF
点此查看论文截图
PM-DETR: Domain Adaptive Prompt Memory for Object Detection with Transformers
Authors:Peidong Jia, Jiaming Liu, Senqiao Yang, Jiarui Wu, Xiaodong Xie, Shanghang Zhang
The Transformer-based detectors (i.e., DETR) have demonstrated impressive performance on end-to-end object detection. However, transferring DETR to different data distributions may lead to a significant performance degradation. Existing adaptation techniques focus on model-based approaches, which aim to leverage feature alignment to narrow the distribution shift between different domains. In this study, we propose a hierarchical Prompt Domain Memory (PDM) for adapting detection transformers to different distributions. PDM comprehensively leverages the prompt memory to extract domain-specific knowledge and explicitly constructs a long-term memory space for the data distribution, which represents better domain diversity compared to existing methods. Specifically, each prompt and its corresponding distribution value are paired in the memory space, and we inject top M distribution-similar prompts into the input and multi-level embeddings of DETR. Additionally, we introduce the Prompt Memory Alignment (PMA) to reduce the discrepancy between the source and target domains by fully leveraging the domain-specific knowledge extracted from the prompt domain memory. Extensive experiments demonstrate that our method outperforms state-of-the-art domain adaptive object detection methods on three benchmarks, including scene, synthetic to real, and weather adaptation. Codes will be released.
PDF cs.cv
点此查看论文截图
Generating Reliable Pixel-Level Labels for Source Free Domain Adaptation
Authors:Gabriel Tjio, Ping Liu, Yawei Luo, Chee Keong Kwoh, Joey Zhou Tianyi
This work addresses the challenging domain adaptation setting in which knowledge from the labelled source domain dataset is available only from the pretrained black-box segmentation model. The pretrained model’s predictions for the target domain images are noisy because of the distributional differences between the source domain data and the target domain data. Since the model’s predictions serve as pseudo labels during self-training, the noise in the predictions impose an upper bound on model performance. Therefore, we propose a simple yet novel image translation workflow, ReGEN, to address this problem. ReGEN comprises an image-to-image translation network and a segmentation network. Our workflow generates target-like images using the noisy predictions from the original target domain images. These target-like images are semantically consistent with the noisy model predictions and therefore can be used to train the segmentation network. In addition to being semantically consistent with the predictions from the original target domain images, the generated target-like images are also stylistically similar to the target domain images. This allows us to leverage the stylistic differences between the target-like images and the target domain image as an additional source of supervision while training the segmentation model. We evaluate our model with two benchmark domain adaptation settings and demonstrate that our approach performs favourably relative to recent state-of-the-art work. The source code will be made available.
PDF
点此查看论文截图
SAM-DA: UAV Tracks Anything at Night with SAM-Powered Domain Adaptation
Authors:Liangliang Yao, Haobo Zuo, Guangze Zheng, Changhong Fu, Jia Pan
Domain adaptation (DA) has demonstrated significant promise for real-time nighttime unmanned aerial vehicle (UAV) tracking. However, the state-of-the-art (SOTA) DA still lacks the potential object with accurate pixel-level location and boundary to generate the high-quality target domain training sample. This key issue constrains the transfer learning of the real-time daytime SOTA trackers for challenging nighttime UAV tracking. Recently, the notable Segment Anything Model (SAM) has achieved remarkable zero-shot generalization ability to discover abundant potential objects due to its huge data-driven training approach. To solve the aforementioned issue, this work proposes a novel SAM-powered DA framework for real-time nighttime UAV tracking, i.e., SAM-DA. Specifically, an innovative SAM-powered target domain training sample swelling is designed to determine enormous high-quality target domain training samples from every single raw nighttime image. This novel one-to-many method significantly expands the high-quality target domain training sample for DA. Comprehensive experiments on extensive nighttime UAV videos prove the robustness and domain adaptability of SAM-DA for nighttime UAV tracking. Especially, compared to the SOTA DA, SAM-DA can achieve better performance with fewer raw nighttime images, i.e., the fewer-better training. This economized training approach facilitates the quick validation and deployment of algorithms for UAVs. The code is available at https://github.com/vision4robotics/SAM-DA.
PDF
点此查看论文截图
FedHIL: Heterogeneity Resilient Federated Learning for Robust Indoor Localization with Mobile Devices
Authors:Danish Gufran, Sudeep Pasricha
Indoor localization plays a vital role in applications such as emergency response, warehouse management, and augmented reality experiences. By deploying machine learning (ML) based indoor localization frameworks on their mobile devices, users can localize themselves in a variety of indoor and subterranean environments. However, achieving accurate indoor localization can be challenging due to heterogeneity in the hardware and software stacks of mobile devices, which can result in inconsistent and inaccurate location estimates. Traditional ML models also heavily rely on initial training data, making them vulnerable to degradation in performance with dynamic changes across indoor environments. To address the challenges due to device heterogeneity and lack of adaptivity, we propose a novel embedded ML framework called FedHIL. Our framework combines indoor localization and federated learning (FL) to improve indoor localization accuracy in device-heterogeneous environments while also preserving user data privacy. FedHIL integrates a domain-specific selective weight adjustment approach to preserve the ML model’s performance for indoor localization during FL, even in the presence of extremely noisy data. Experimental evaluations in diverse real-world indoor environments and with heterogeneous mobile devices show that FedHIL outperforms state-of-the-art FL and non-FL indoor localization frameworks. FedHIL is able to achieve 1.62x better localization accuracy on average than the best performing FL-based indoor localization framework from prior work.
PDF
点此查看论文截图
Approximate, Adapt, Anonymize (3A): a Framework for Privacy Preserving Training Data Release for Machine Learning
Authors:Tamas Madl, Weijie Xu, Olivia Choudhury, Matthew Howard
The availability of large amounts of informative data is crucial for successful machine learning. However, in domains with sensitive information, the release of high-utility data which protects the privacy of individuals has proven challenging. Despite progress in differential privacy and generative modeling for privacy-preserving data release in the literature, only a few approaches optimize for machine learning utility: most approaches only take into account statistical metrics on the data itself and fail to explicitly preserve the loss metrics of machine learning models that are to be subsequently trained on the generated data. In this paper, we introduce a data release framework, 3A (Approximate, Adapt, Anonymize), to maximize data utility for machine learning, while preserving differential privacy. We also describe a specific implementation of this framework that leverages mixture models to approximate, kernel-inducing points to adapt, and Gaussian differential privacy to anonymize a dataset, in order to ensure that the resulting data is both privacy-preserving and high utility. We present experimental evidence showing minimal discrepancy between performance metrics of models trained on real versus privatized datasets, when evaluated on held-out real data. We also compare our results with several privacy-preserving synthetic data generation models (such as differentially private generative adversarial networks), and report significant increases in classification performance metrics compared to state-of-the-art models. These favorable comparisons show that the presented framework is a promising direction of research, increasing the utility of low-risk synthetic data release for machine learning.
PDF 10 pages, 3 figures, AAAI Workshop
点此查看论文截图
ClimateLearn: Benchmarking Machine Learning for Weather and Climate Modeling
Authors:Tung Nguyen, Jason Jewik, Hritik Bansal, Prakhar Sharma, Aditya Grover
Modeling weather and climate is an essential endeavor to understand the near- and long-term impacts of climate change, as well as inform technology and policymaking for adaptation and mitigation efforts. In recent years, there has been a surging interest in applying data-driven methods based on machine learning for solving core problems such as weather forecasting and climate downscaling. Despite promising results, much of this progress has been impaired due to the lack of large-scale, open-source efforts for reproducibility, resulting in the use of inconsistent or underspecified datasets, training setups, and evaluations by both domain scientists and artificial intelligence researchers. We introduce ClimateLearn, an open-source PyTorch library that vastly simplifies the training and evaluation of machine learning models for data-driven climate science. ClimateLearn consists of holistic pipelines for dataset processing (e.g., ERA5, CMIP6, PRISM), implementation of state-of-the-art deep learning models (e.g., Transformers, ResNets), and quantitative and qualitative evaluation for standard weather and climate modeling tasks. We supplement these functionalities with extensive documentation, contribution guides, and quickstart tutorials to expand access and promote community growth. We have also performed comprehensive forecasting and downscaling experiments to showcase the capabilities and key features of our library. To our knowledge, ClimateLearn is the first large-scale, open-source effort for bridging research in weather and climate modeling with modern machine learning systems. Our library is available publicly at https://github.com/aditya-grover/climate-learn.
PDF
点此查看论文截图
MDViT: Multi-domain Vision Transformer for Small Medical Image Segmentation Datasets
Authors:Siyi Du, Nourhan Bayasi, Ghassan Harmarneh, Rafeef Garbi
Despite its clinical utility, medical image segmentation (MIS) remains a daunting task due to images’ inherent complexity and variability. Vision transformers (ViTs) have recently emerged as a promising solution to improve MIS; however, they require larger training datasets than convolutional neural networks. To overcome this obstacle, data-efficient ViTs were proposed, but they are typically trained using a single source of data, which overlooks the valuable knowledge that could be leveraged from other available datasets. Naivly combining datasets from different domains can result in negative knowledge transfer (NKT), i.e., a decrease in model performance on some domains with non-negligible inter-domain heterogeneity. In this paper, we propose MDViT, the first multi-domain ViT that includes domain adapters to mitigate data-hunger and combat NKT by adaptively exploiting knowledge in multiple small data resources (domains). Further, to enhance representation learning across domains, we integrate a mutual knowledge distillation paradigm that transfers knowledge between a universal network (spanning all the domains) and auxiliary domain-specific branches. Experiments on 4 skin lesion segmentation datasets show that MDViT outperforms state-of-the-art algorithms, with superior segmentation performance and a fixed model size, at inference time, even as more domains are added. Our code is available at https://github.com/siyi-wind/MDViT.
PDF 12 pages, 2 figures, accepted by 26th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2023)
点此查看论文截图
Proportional Response: Contextual Bandits for Simple and Cumulative Regret Minimization
Authors:Sanath Kumar Krishnamurthy, Ruohan Zhan, Susan Athey, Emma Brunskill
Simple regret minimization is a critical problem in learning optimal treatment assignment policies across various domains, including healthcare and e-commerce. However, it remains understudied in the contextual bandit setting. We propose a new family of computationally efficient bandit algorithms for the stochastic contextual bandit settings, with the flexibility to be adapted for cumulative regret minimization (with near-optimal minimax guarantees) and simple regret minimization (with SOTA guarantees). Furthermore, our algorithms adapt to model misspecification and extend to the continuous arm settings. These advantages come from constructing and relying on “conformal arm sets” (CASs), which provide a set of arms at every context that encompass the context-specific optimal arm with some probability across the context distribution. Our positive results on simple and cumulative regret guarantees are contrasted by a negative result, which shows that an algorithm can’t achieve instance-dependent simple regret guarantees while simultaneously achieving minimax optimal cumulative regret guarantees.
PDF
点此查看论文截图
Prompting Diffusion Representations for Cross-Domain Semantic Segmentation
Authors:Rui Gong, Martin Danelljan, Han Sun, Julio Delgado Mangas, Luc Van Gool
While originally designed for image generation, diffusion models have recently shown to provide excellent pretrained feature representations for semantic segmentation. Intrigued by this result, we set out to explore how well diffusion-pretrained representations generalize to new domains, a crucial ability for any representation. We find that diffusion-pretraining achieves extraordinary domain generalization results for semantic segmentation, outperforming both supervised and self-supervised backbone networks. Motivated by this, we investigate how to utilize the model’s unique ability of taking an input prompt, in order to further enhance its cross-domain performance. We introduce a scene prompt and a prompt randomization strategy to help further disentangle the domain-invariant information when training the segmentation head. Moreover, we propose a simple but highly effective approach for test-time domain adaptation, based on learning a scene prompt on the target domain in an unsupervised manner. Extensive experiments conducted on four synthetic-to-real and clear-to-adverse weather benchmarks demonstrate the effectiveness of our approaches. Without resorting to any complex techniques, such as image translation, augmentation, or rare-class sampling, we set a new state-of-the-art on all benchmarks. Our implementation will be publicly available at \url{https://github.com/ETHRuiGong/PTDiffSeg}.
PDF 17 pages, 3 figures, 11 tables
点此查看论文截图
FREEDOM: Target Label & Source Data & Domain Information-Free Multi-Source Domain Adaptation for Unsupervised Personalization
Authors:Eunju Yang, Gyusang Cho, Chan-Hyun Youn
From a service perspective, Multi-Source Domain Adaptation (MSDA) is a promising scenario to adapt a deployed model to a client’s dataset. It can provide adaptation without a target label and support the case where a source dataset is constructed from multiple domains. However, it is impractical, wherein its training heavily relies on prior domain information of the multi-source dataset — how many domains exist and the domain label of each data sample. Moreover, MSDA requires both source and target datasets simultaneously (physically), causing storage limitations on the client device or data privacy issues by transferring client data to a server. For a more practical scenario of model adaptation from a service provider’s point of view, we relax these constraints and present a novel problem scenario of Three-Free Domain Adaptation, namely TFDA, where 1) target labels, 2) source dataset, and mostly 3) source domain information (domain labels + the number of domains) are unavailable. Under the problem scenario, we propose a practical adaptation framework called FREEDOM. It leverages the power of the generative model, disentangling data into class and style aspects, where the style is defined as the class-independent information from the source data and designed with a nonparametric Bayesian approach. In the adaptation stage, FREEDOM aims to match the source class distribution with the target’s under the philosophy that class distribution is consistent even if the style is different; after then, only part of the classification model is deployed as a personalized network. As a result, FREEDOM achieves state-of-the-art or comparable performance even without domain information, with reduced final model size on the target side, independent of the number of source domains.
PDF
点此查看论文截图
Semi-supervised Domain Adaptive Medical Image Segmentation through Consistency Regularized Disentangled Contrastive Learning
Authors:Hritam Basak, Zhaozheng Yin
Although unsupervised domain adaptation (UDA) is a promising direction to alleviate domain shift, they fall short of their supervised counterparts. In this work, we investigate relatively less explored semi-supervised domain adaptation (SSDA) for medical image segmentation, where access to a few labeled target samples can improve the adaptation performance substantially. Specifically, we propose a two-stage training process. First, an encoder is pre-trained in a self-learning paradigm using a novel domain-content disentangled contrastive learning (CL) along with a pixel-level feature consistency constraint. The proposed CL enforces the encoder to learn discriminative content-specific but domain-invariant semantics on a global scale from the source and target images, whereas consistency regularization enforces the mining of local pixel-level information by maintaining spatial sensitivity. This pre-trained encoder, along with a decoder, is further fine-tuned for the downstream task, (i.e. pixel-level segmentation) using a semi-supervised setting. Furthermore, we experimentally validate that our proposed method can easily be extended for UDA settings, adding to the superiority of the proposed strategy. Upon evaluation on two domain adaptive image segmentation tasks, our proposed method outperforms the SoTA methods, both in SSDA and UDA settings. Code is available at https://github.com/hritam-98/GFDA-disentangled
PDF Paper accepted at MICCAI 2023
点此查看论文截图
Parameter-Efficient Fine-Tuning of LLaMA for the Clinical Domain
Authors:Aryo Gema, Luke Daines, Pasquale Minervini, Beatrice Alex
Adapting pretrained language models to novel domains, such as clinical applications, traditionally involves retraining their entire set of parameters. However, this approach is increasingly proven to be impractical owing to the substantial computational requirements associated with training such large language models. To address this issue, Parameter-Efficient Fine-Tuning (PEFT) techniques offer a viable solution by selectively fine-tuning a small subset of additional parameters, significantly reducing the computational requirements for domain adaptation. In this study, we propose Clinical LLaMA-LoRA, a PEFT adapter layer built upon the open-sourced LLaMA model. Clinical LLaMA-LoRA is trained using clinical notes obtained from the MIMIC-IV database, thereby creating a specialised adapter designed for the clinical domain. Additionally, we propose a two-step PEFT framework which fuses Clinical LLaMA-LoRA with Downstream LLaMA-LoRA, another PEFT adapter specialised for downstream tasks. We evaluate this framework on multiple clinical outcome prediction datasets, comparing it to clinically trained language models. Our proposed framework achieves a state-of-the-art AUROC score averaged across all clinical downstream tasks. We observe substantial improvements of 6-9% AUROC score in the large-scale multilabel classification tasks, such as diagnoses and procedures classification.
PDF
点此查看论文截图
Efficient Domain Adaptation of Sentence Embeddings using Adapters
Authors:Tim Schopf, Dennis Schneider, Florian Matthes
Sentence embeddings enable us to capture the semantic similarity of short texts. Most sentence embedding models are trained for general semantic textual similarity (STS) tasks. Therefore, to use sentence embeddings in a particular domain, the model must be adapted to it in order to achieve good results. Usually, this is done by fine-tuning the entire sentence embedding model for the domain of interest. While this approach yields state-of-the-art results, all of the model’s weights are updated during fine-tuning, making this method resource-intensive. Therefore, instead of fine-tuning entire sentence embedding models for each target domain individually, we propose to train lightweight adapters. These domain-specific adapters do not require fine-tuning all underlying sentence embedding model parameters. Instead, we only train a small number of additional parameters while keeping the weights of the underlying sentence embedding model fixed. Training domain-specific adapters allows always using the same base model and only exchanging the domain-specific adapters to adapt sentence embeddings to a specific domain. We show that using adapters for parameter-efficient domain adaptation of sentence embeddings yields competitive performance within 1% of a domain-adapted, entirely fine-tuned sentence embedding model while only training approximately 3.6% of the parameters.
PDF Accepted to the International Conference on Recent Advances in Natural Language Processing (RANLP 2023)
点此查看论文截图
Benchmarking Test-Time Adaptation against Distribution Shifts in Image Classification
Authors:Yongcan Yu, Lijun Sheng, Ran He, Jian Liang
Test-time adaptation (TTA) is a technique aimed at enhancing the generalization performance of models by leveraging unlabeled samples solely during prediction. Given the need for robustness in neural network systems when faced with distribution shifts, numerous TTA methods have recently been proposed. However, evaluating these methods is often done under different settings, such as varying distribution shifts, backbones, and designing scenarios, leading to a lack of consistent and fair benchmarks to validate their effectiveness. To address this issue, we present a benchmark that systematically evaluates 13 prominent TTA methods and their variants on five widely used image classification datasets: CIFAR-10-C, CIFAR-100-C, ImageNet-C, DomainNet, and Office-Home. These methods encompass a wide range of adaptation scenarios (e.g. online adaptation v.s. offline adaptation, instance adaptation v.s. batch adaptation v.s. domain adaptation). Furthermore, we explore the compatibility of different TTA methods with diverse network backbones. To implement this benchmark, we have developed a unified framework in PyTorch, which allows for consistent evaluation and comparison of the TTA methods across the different datasets and network architectures. By establishing this benchmark, we aim to provide researchers and practitioners with a reliable means of assessing and comparing the effectiveness of TTA methods in improving model robustness and generalization performance. Our code is available at https://github.com/yuyongcan/Benchmark-TTA.
PDF