NeRF


2023-07-01 更新

Envisioning a Next Generation Extended Reality Conferencing System with Efficient Photorealistic Human Rendering

Authors:Chuanyue Shen, Letian Zhang, Zhangsihao Yang, Masood Mortazavi, Xiyun Song, Liang Peng, Heather Yu

Meeting online is becoming the new normal. Creating an immersive experience for online meetings is a necessity towards more diverse and seamless environments. Efficient photorealistic rendering of human 3D dynamics is the core of immersive meetings. Current popular applications achieve real-time conferencing but fall short in delivering photorealistic human dynamics, either due to limited 2D space or the use of avatars that lack realistic interactions between participants. Recent advances in neural rendering, such as the Neural Radiance Field (NeRF), offer the potential for greater realism in metaverse meetings. However, the slow rendering speed of NeRF poses challenges for real-time conferencing. We envision a pipeline for a future extended reality metaverse conferencing system that leverages monocular video acquisition and free-viewpoint synthesis to enhance data and hardware efficiency. Towards an immersive conferencing experience, we explore an accelerated NeRF-based free-viewpoint synthesis algorithm for rendering photorealistic human dynamics more efficiently. We show that our algorithm achieves comparable rendering quality while performing training and inference 44.5% and 213% faster than state-of-the-art methods, respectively. Our exploration provides a design basis for constructing metaverse conferencing systems that can handle complex application scenarios, including dynamic scene relighting with customized themes and multi-user conferencing that harmonizes real-world people into an extended world.
PDF Accepted to CVPR 2023 ECV Workshop

点此查看论文截图

One-2-3-45: Any Single Image to 3D Mesh in 45 Seconds without Per-Shape Optimization

Authors:Minghua Liu, Chao Xu, Haian Jin, Linghao Chen, Mukund Varma T, Zexiang Xu, Hao Su

Single image 3D reconstruction is an important but challenging task that requires extensive knowledge of our natural world. Many existing methods solve this problem by optimizing a neural radiance field under the guidance of 2D diffusion models but suffer from lengthy optimization time, 3D inconsistency results, and poor geometry. In this work, we propose a novel method that takes a single image of any object as input and generates a full 360-degree 3D textured mesh in a single feed-forward pass. Given a single image, we first use a view-conditioned 2D diffusion model, Zero123, to generate multi-view images for the input view, and then aim to lift them up to 3D space. Since traditional reconstruction methods struggle with inconsistent multi-view predictions, we build our 3D reconstruction module upon an SDF-based generalizable neural surface reconstruction method and propose several critical training strategies to enable the reconstruction of 360-degree meshes. Without costly optimizations, our method reconstructs 3D shapes in significantly less time than existing methods. Moreover, our method favors better geometry, generates more 3D consistent results, and adheres more closely to the input image. We evaluate our approach on both synthetic data and in-the-wild images and demonstrate its superiority in terms of both mesh quality and runtime. In addition, our approach can seamlessly support the text-to-3D task by integrating with off-the-shelf text-to-image diffusion models.
PDF project website: one-2-3-45.com

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录