I2I Translation


2023-07-01 更新

Free-style and Fast 3D Portrait Synthesis

Authors:Tianxiang Ma, Kang Zhao, Jianxin Sun, Jing Dong, Tieniu Tan

Efficiently generating a free-style 3D portrait with high quality and consistency is a promising yet challenging task. The portrait styles generated by most existing methods are usually restricted by their 3D generators, which are learned in specific facial datasets, such as FFHQ. To get a free-style 3D portrait, one can build a large-scale multi-style database to retrain the 3D generator, or use a off-the-shelf tool to do the style translation. However, the former is time-consuming due to data collection and training process, the latter may destroy the multi-view consistency. To tackle this problem, we propose a fast 3D portrait synthesis framework in this paper, which enable one to use text prompts to specify styles. Specifically, for a given portrait style, we first leverage two generative priors, a 3D-aware GAN generator (EG3D) and a text-guided image editor (Ip2p), to quickly construct a few-shot training set, where the inference process of Ip2p is optimized to make editing more stable. Then we replace original triplane generator of EG3D with a Image-to-Triplane (I2T) module for two purposes: 1) getting rid of the style constraints of pre-trained EG3D by fine-tuning I2T on the few-shot dataset; 2) improving training efficiency by fixing all parts of EG3D except I2T. Furthermore, we construct a multi-style and multi-identity 3D portrait database to demonstrate the scalability and generalization of our method. Experimental results show that our method is capable of synthesizing high-quality 3D portraits with specified styles in a few minutes, outperforming the state-of-the-art.
PDF project website: https://tianxiangma.github.io/FF3D

点此查看论文截图

Stop Pre-Training: Adapt Visual-Language Models to Unseen Languages

Authors:Yasmine Karoui, Rémi Lebret, Negar Foroutan, Karl Aberer

Vision-Language Pre-training (VLP) has advanced the performance of many vision-language tasks, such as image-text retrieval, visual entailment, and visual reasoning. The pre-training mostly utilizes lexical databases and image queries in English. Previous work has demonstrated that the pre-training in English does not transfer well to other languages in a zero-shot setting. However, multilingual pre-trained language models (MPLM) have excelled at a variety of single-modal language tasks. In this paper, we propose a simple yet efficient approach to adapt VLP to unseen languages using MPLM. We utilize a cross-lingual contextualized token embeddings alignment approach to train text encoders for non-English languages. Our approach does not require image input and primarily uses machine translation, eliminating the need for target language data. Our evaluation across three distinct tasks (image-text retrieval, visual entailment, and natural language visual reasoning) demonstrates that this approach outperforms the state-of-the-art multilingual vision-language models without requiring large parallel corpora. Our code is available at https://github.com/Yasminekaroui/CliCoTea.
PDF Accepted to ACL 2023 as short paper

点此查看论文截图

Filtered-Guided Diffusion: Fast Filter Guidance for Black-Box Diffusion Models

Authors:Zeqi Gu, Abe Davis

Recent advances in diffusion-based generative models have shown incredible promise for Image-to-Image translation and editing. Most recent work in this space relies on additional training or architecture-specific adjustments to the diffusion process. In this work, we show that much of this low-level control can be achieved without additional training or any access to features of the diffusion model. Our method simply applies a filter to the input of each diffusion step based on the output of the previous step in an adaptive manner. Notably, this approach does not depend on any specific architecture or sampler and can be done without access to internal features of the network, making it easy to combine with other techniques, samplers, and diffusion architectures. Furthermore, it has negligible cost to performance, and allows for more continuous adjustment of guidance strength than other approaches. We show FGD offers a fast and strong baseline that is competitive with recent architecture-dependent approaches. Furthermore, FGD can also be used as a simple add-on to enhance the structural guidance of other state-of-the-art I2I methods. Finally, our derivation of this method helps to understand the impact of self attention, a key component of other recent architecture-specific I2I approaches, in a more architecture-independent way. Project page: https://github.com/jaclyngu/FilteredGuidedDiffusion
PDF Project page: https://github.com/jaclyngu/FilteredGuidedDiffusion

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录