2023-07-01 更新
MIMIC: Masked Image Modeling with Image Correspondences
Authors:Kalyani Marathe, Mahtab Bigverdi, Nishat Khan, Tuhin Kundu, Aniruddha Kembhavi, Linda G. Shapiro, Ranjay Krishna
Many pixelwise dense prediction tasks-depth estimation and semantic segmentation in computer vision today rely on pretrained image representations. Therefore, curating effective pretraining datasets is vital. Unfortunately, the effective pretraining datasets are those with multi-view scenes and have only been curated using annotated 3D meshes, point clouds, and camera parameters from simulated environments. We propose a dataset-curation mechanism that does not require any annotations. We mine two datasets: MIMIC-1M with 1.3M and MIMIC-3M with 3.1M multi-view image pairs from open-sourced video datasets and from synthetic 3D environments. We train multiple self-supervised models with different masked image modeling objectives to showcase the following findings: Representations trained on MIMIC-3M outperform those mined using annotations on multiple downstream tasks, including depth estimation, semantic segmentation, surface normals, and pose estimation. They also outperform representations that are frozen and when downstream training data is limited to few-shot. Larger dataset (MIMIC-3M) significantly improves performance, which is promising since our curation method can arbitrarily scale to produce even larger datasets. MIMIC code, dataset, and pretrained models are open-sourced at https://github.com/RAIVNLab/MIMIC.
PDF
点此查看论文截图
Contrastive Meta-Learning for Few-shot Node Classification
Authors:Song Wang, Zhen Tan, Huan Liu, Jundong Li
Few-shot node classification, which aims to predict labels for nodes on graphs with only limited labeled nodes as references, is of great significance in real-world graph mining tasks. Particularly, in this paper, we refer to the task of classifying nodes in classes with a few labeled nodes as the few-shot node classification problem. To tackle such a label shortage issue, existing works generally leverage the meta-learning framework, which utilizes a number of episodes to extract transferable knowledge from classes with abundant labeled nodes and generalizes the knowledge to other classes with limited labeled nodes. In essence, the primary aim of few-shot node classification is to learn node embeddings that are generalizable across different classes. To accomplish this, the GNN encoder must be able to distinguish node embeddings between different classes, while also aligning embeddings for nodes in the same class. Thus, in this work, we propose to consider both the intra-class and inter-class generalizability of the model. We create a novel contrastive meta-learning framework on graphs, named COSMIC, with two key designs. First, we propose to enhance the intra-class generalizability by involving a contrastive two-step optimization in each episode to explicitly align node embeddings in the same classes. Second, we strengthen the inter-class generalizability by generating hard node classes via a novel similarity-sensitive mix-up strategy. Extensive experiments on few-shot node classification datasets verify the superiority of our framework over state-of-the-art baselines. Our code is provided at https://github.com/SongW-SW/COSMIC.
PDF SIGKDD 2023
点此查看论文截图
Free-style and Fast 3D Portrait Synthesis
Authors:Tianxiang Ma, Kang Zhao, Jianxin Sun, Jing Dong, Tieniu Tan
Efficiently generating a free-style 3D portrait with high quality and consistency is a promising yet challenging task. The portrait styles generated by most existing methods are usually restricted by their 3D generators, which are learned in specific facial datasets, such as FFHQ. To get a free-style 3D portrait, one can build a large-scale multi-style database to retrain the 3D generator, or use a off-the-shelf tool to do the style translation. However, the former is time-consuming due to data collection and training process, the latter may destroy the multi-view consistency. To tackle this problem, we propose a fast 3D portrait synthesis framework in this paper, which enable one to use text prompts to specify styles. Specifically, for a given portrait style, we first leverage two generative priors, a 3D-aware GAN generator (EG3D) and a text-guided image editor (Ip2p), to quickly construct a few-shot training set, where the inference process of Ip2p is optimized to make editing more stable. Then we replace original triplane generator of EG3D with a Image-to-Triplane (I2T) module for two purposes: 1) getting rid of the style constraints of pre-trained EG3D by fine-tuning I2T on the few-shot dataset; 2) improving training efficiency by fixing all parts of EG3D except I2T. Furthermore, we construct a multi-style and multi-identity 3D portrait database to demonstrate the scalability and generalization of our method. Experimental results show that our method is capable of synthesizing high-quality 3D portraits with specified styles in a few minutes, outperforming the state-of-the-art.
PDF project website: https://tianxiangma.github.io/FF3D
点此查看论文截图
Towards Open Vocabulary Learning: A Survey
Authors:Jianzong Wu, Xiangtai Li, Shilin Xu. Haobo Yuan, Henghui Ding, Yibo Yang, Xia Li, Jiangning Zhang, Yunhai Tong, Xudong Jiang, Bernard Ghanem, Dacheng Tao
In the field of visual scene understanding, deep neural networks have made impressive advancements in various core tasks like segmentation, tracking, and detection. However, most approaches operate on the close-set assumption, meaning that the model can only identify pre-defined categories that are present in the training set. Recently, open vocabulary settings were proposed due to the rapid progress of vision language pre-training. These new approaches seek to locate and recognize categories beyond the annotated label space. The open vocabulary approach is more general, practical, and effective compared to weakly supervised and zero-shot settings. This paper provides a thorough review of open vocabulary learning, summarizing and analyzing recent developments in the field. In particular, we begin by comparing it to related concepts such as zero-shot learning, open-set recognition, and out-of-distribution detection. Then, we review several closely related tasks in the case of segmentation and detection, including long-tail problems, few-shot, and zero-shot settings. For the method survey, we first present the basic knowledge of detection and segmentation in close-set as the preliminary knowledge. Next, we examine various scenarios in which open vocabulary learning is used, identifying common design elements and core ideas. Then, we compare the recent detection and segmentation approaches in commonly used datasets and benchmarks. Finally, we conclude with insights, issues, and discussions regarding future research directions. To our knowledge, this is the first comprehensive literature review of open vocabulary learning. We keep tracing related works at https://github.com/jianzongwu/Awesome-Open-Vocabulary.
PDF Project page at https://github.com/jianzongwu/Awesome-Open-Vocabulary
点此查看论文截图
Two-Stage Voice Anonymization for Enhanced Privacy
Authors:Francesco Nespoli, Daniel Barreda, Joerg Bitzer, Patrick A. Naylor
In recent years, the need for privacy preservation when manipulating or storing personal data, including speech , has become a major issue. In this paper, we present a system addressing the speaker-level anonymization problem. We propose and evaluate a two-stage anonymization pipeline exploiting a state-of-the-art anonymization model described in the Voice Privacy Challenge 2022 in combination with a zero-shot voice conversion architecture able to capture speaker characteristics from a few seconds of speech. We show this architecture can lead to strong privacy preservation while preserving pitch information. Finally, we propose a new compressed metric to evaluate anonymization systems in privacy scenarios with different constraints on privacy and utility.
PDF submitted to INTERSPEECH
点此查看论文截图
Towards Language Models That Can See: Computer Vision Through the LENS of Natural Language
Authors:William Berrios, Gautam Mittal, Tristan Thrush, Douwe Kiela, Amanpreet Singh
We propose LENS, a modular approach for tackling computer vision problems by leveraging the power of large language models (LLMs). Our system uses a language model to reason over outputs from a set of independent and highly descriptive vision modules that provide exhaustive information about an image. We evaluate the approach on pure computer vision settings such as zero- and few-shot object recognition, as well as on vision and language problems. LENS can be applied to any off-the-shelf LLM and we find that the LLMs with LENS perform highly competitively with much bigger and much more sophisticated systems, without any multimodal training whatsoever. We open-source our code at https://github.com/ContextualAI/lens and provide an interactive demo.
PDF
点此查看论文截图
Graph Sampling-based Meta-Learning for Molecular Property Prediction
Authors:Xiang Zhuang, Qiang Zhang, Bin Wu, Keyan Ding, Yin Fang, Huajun Chen
Molecular property is usually observed with a limited number of samples, and researchers have considered property prediction as a few-shot problem. One important fact that has been ignored by prior works is that each molecule can be recorded with several different properties simultaneously. To effectively utilize many-to-many correlations of molecules and properties, we propose a Graph Sampling-based Meta-learning (GS-Meta) framework for few-shot molecular property prediction. First, we construct a Molecule-Property relation Graph (MPG): molecule and properties are nodes, while property labels decide edges. Then, to utilize the topological information of MPG, we reformulate an episode in meta-learning as a subgraph of the MPG, containing a target property node, molecule nodes, and auxiliary property nodes. Third, as episodes in the form of subgraphs are no longer independent of each other, we propose to schedule the subgraph sampling process with a contrastive loss function, which considers the consistency and discrimination of subgraphs. Extensive experiments on 5 commonly-used benchmarks show GS-Meta consistently outperforms state-of-the-art methods by 5.71%-6.93% in ROC-AUC and verify the effectiveness of each proposed module. Our code is available at https://github.com/HICAI-ZJU/GS-Meta.
PDF Accepted by IJCAI 2023
点此查看论文截图
Benchmarking Large Language Model Capabilities for Conditional Generation
Authors:Joshua Maynez, Priyanka Agrawal, Sebastian Gehrmann
Pre-trained large language models (PLMs) underlie most new developments in natural language processing. They have shifted the field from application-specific model pipelines to a single model that is adapted to a wide range of tasks. Autoregressive PLMs like GPT-3 or PaLM, alongside techniques like few-shot learning, have additionally shifted the output modality to generation instead of classification or regression. Despite their ubiquitous use, the generation quality of language models is rarely evaluated when these models are introduced. Additionally, it is unclear how existing generation tasks—while they can be used to compare systems at a high level—relate to the real world use cases for which people have been adopting them. In this work, we discuss how to adapt existing application-specific generation benchmarks to PLMs and provide an in-depth, empirical study of the limitations and capabilities of PLMs in natural language generation tasks along dimensions such as scale, architecture, input and output language. Our results show that PLMs differ in their applicability to different data regimes and their generalization to multiple languages and inform which PLMs to use for a given generation task setup. We share best practices to be taken into consideration when benchmarking generation capabilities during the development of upcoming PLMs.
PDF
点此查看论文截图
Understanding the Overfitting of the Episodic Meta-training
Authors:Siqi Hui, Sanping Zhou, Ye deng, Jinjun Wang
Despite the success of two-stage few-shot classification methods, in the episodic meta-training stage, the model suffers severe overfitting. We hypothesize that it is caused by over-discrimination, i.e., the model learns to over-rely on the superficial features that fit for base class discrimination while suppressing the novel class generalization. To penalize over-discrimination, we introduce knowledge distillation techniques to keep novel generalization knowledge from the teacher model during training. Specifically, we select the teacher model as the one with the best validation accuracy during meta-training and restrict the symmetric Kullback-Leibler (SKL) divergence between the output distribution of the linear classifier of the teacher model and that of the student model. This simple approach outperforms the standard meta-training process. We further propose the Nearest Neighbor Symmetric Kullback-Leibler (NNSKL) divergence for meta-training to push the limits of knowledge distillation techniques. NNSKL takes few-shot tasks as input and penalizes the output of the nearest neighbor classifier, which possesses an impact on the relationships between query embedding and support centers. By combining SKL and NNSKL in meta-training, the model achieves even better performance and surpasses state-of-the-art results on several benchmarks.
PDF
点此查看论文截图
The mapKurator System: A Complete Pipeline for Extracting and Linking Text from Historical Maps
Authors:Jina Kim, Zekun Li, Yijun Lin, Min Namgung, Leeje Jang, Yao-Yi Chiang
Documents hold spatial focus and valuable locality characteristics. For example, descriptions of listings in real estate or travel blogs contain information about specific local neighborhoods. This information is valuable to characterize how humans perceive their environment. However, the first step to making use of this information is to identify the spatial focus (e.g., a city) of a document. Traditional approaches for identifying the spatial focus of a document rely on detecting and disambiguating toponyms from the document. This approach requires a vocabulary set of location phrases and ad-hoc rules, which ignore important words related to location. Recent topic modeling approaches using large language models often consider a few topics, each with broad coverage. In contrast, the spatial focus of a document can be a country, a city, or even a neighborhood, which together, is much larger than the number of topics considered in these approaches. Additionally, topic modeling methods are often applied to broad topics of news articles where context is easily distinguishable. To identify the geographic focus of a document effectively, we present a simple but effective Joint Embedding of multi-LocaLitY (JELLY), which jointly learns representations with separate encoders of document and location. JELLY significantly outperforms state-of-the-art methods for identifying spatial focus from documents from a number of sources. We also demonstrate case studies on the arithmetic of the learned representations, including identifying cities with similar locality characteristics and zero-shot learning to identify document spatial focus.
PDF 4 pages, 4 figures