2023-06-27 更新
Continuous Layout Editing of Single Images with Diffusion Models
Authors:Zhiyuan Zhang, Zhitong Huang, Jing Liao
Recent advancements in large-scale text-to-image diffusion models have enabled many applications in image editing. However, none of these methods have been able to edit the layout of single existing images. To address this gap, we propose the first framework for layout editing of a single image while preserving its visual properties, thus allowing for continuous editing on a single image. Our approach is achieved through two key modules. First, to preserve the characteristics of multiple objects within an image, we disentangle the concepts of different objects and embed them into separate textual tokens using a novel method called masked textual inversion. Next, we propose a training-free optimization method to perform layout control for a pre-trained diffusion model, which allows us to regenerate images with learned concepts and align them with user-specified layouts. As the first framework to edit the layout of existing images, we demonstrate that our method is effective and outperforms other baselines that were modified to support this task. Our code will be freely available for public use upon acceptance.
PDF
点此查看论文截图
Directional diffusion models for graph representation learning
Authors:Run Yang, Yuling Yang, Fan Zhou, Qiang Sun
In recent years, diffusion models have achieved remarkable success in various domains of artificial intelligence, such as image synthesis, super-resolution, and 3D molecule generation. However, the application of diffusion models in graph learning has received relatively little attention. In this paper, we address this gap by investigating the use of diffusion models for unsupervised graph representation learning. We begin by identifying the anisotropic structures of graphs and a crucial limitation of the vanilla forward diffusion process in learning anisotropic structures. This process relies on continuously adding an isotropic Gaussian noise to the data, which may convert the anisotropic signals to noise too quickly. This rapid conversion hampers the training of denoising neural networks and impedes the acquisition of semantically meaningful representations in the reverse process. To address this challenge, we propose a new class of models called {\it directional diffusion models}. These models incorporate data-dependent, anisotropic, and directional noises in the forward diffusion process. To assess the efficacy of our proposed models, we conduct extensive experiments on 12 publicly available datasets, focusing on two distinct graph representation learning tasks. The experimental results demonstrate the superiority of our models over state-of-the-art baselines, indicating their effectiveness in capturing meaningful graph representations. Our studies not only provide valuable insights into the forward process of diffusion models but also highlight the wide-ranging potential of these models for various graph-related tasks.
PDF
点此查看论文截图
Decoupled Diffusion Models with Explicit Transition Probability
Authors:Yuhang Huang, Zheng Qin, Xinwang Liu, Kai Xu
Recent diffusion probabilistic models (DPMs) have shown remarkable abilities of generated content, however, they often suffer from complex forward processes, resulting in inefficient solutions for the reversed process and prolonged sampling times. In this paper, we aim to address the aforementioned challenges by focusing on the diffusion process itself that we propose to decouple the intricate diffusion process into two comparatively simpler process to improve the generative efficacy and speed. In particular, we present a novel diffusion paradigm named DDM (\textbf{D}ecoupled \textbf{D}iffusion \textbf{M}odels) based on the It\^{o} diffusion process, in which the image distribution is approximated by an explicit transition probability while the noise path is controlled by the standard Wiener process. We find that decoupling the diffusion process reduces the learning difficulty and the explicit transition probability improves the generative speed significantly. We prove a new training objective for DPM, which enables the model to learn to predict the noise and image components separately. Moreover, given the novel forward diffusion equation, we derive the reverse denoising formula of DDM that naturally supports fewer steps of generation without ordinary differential equation (ODE) based accelerators. Our experiments demonstrate that DDM outperforms previous DPMs by a large margin in fewer function evaluations setting and gets comparable performances in long function evaluations setting. We also show that our framework can be applied to image-conditioned generation and high-resolution image synthesis, and that it can generate high-quality images with only 10 function evaluations.
PDF
点此查看论文截图
Zero-shot spatial layout conditioning for text-to-image diffusion models
Authors:Guillaume Couairon, Marlène Careil, Matthieu Cord, Stéphane Lathuilière, Jakob Verbeek
Large-scale text-to-image diffusion models have significantly improved the state of the art in generative image modelling and allow for an intuitive and powerful user interface to drive the image generation process. Expressing spatial constraints, e.g. to position specific objects in particular locations, is cumbersome using text; and current text-based image generation models are not able to accurately follow such instructions. In this paper we consider image generation from text associated with segments on the image canvas, which combines an intuitive natural language interface with precise spatial control over the generated content. We propose ZestGuide, a zero-shot segmentation guidance approach that can be plugged into pre-trained text-to-image diffusion models, and does not require any additional training. It leverages implicit segmentation maps that can be extracted from cross-attention layers, and uses them to align the generation with input masks. Our experimental results combine high image quality with accurate alignment of generated content with input segmentations, and improve over prior work both quantitatively and qualitatively, including methods that require training on images with corresponding segmentations. Compared to Paint with Words, the previous state-of-the art in image generation with zero-shot segmentation conditioning, we improve by 5 to 10 mIoU points on the COCO dataset with similar FID scores.
PDF
点此查看论文截图
Fighting Uncertainty with Gradients: Offline Reinforcement Learning via Diffusion Score Matching
Authors:H. J. Terry Suh, Glen Chou, Hongkai Dai, Lujie Yang, Abhishek Gupta, Russ Tedrake
Offline optimization paradigms such as offline Reinforcement Learning (RL) or Imitation Learning (IL) allow policy search algorithms to make use of offline data, but require careful incorporation of uncertainty in order to circumvent the challenges of distribution shift. Gradient-based policy search methods are a promising direction due to their effectiveness in high dimensions; however, we require a more careful consideration of how these methods interplay with uncertainty estimation. We claim that in order for an uncertainty metric to be amenable for gradient-based optimization, it must be (i) stably convergent to data when uncertainty is minimized with gradients, and (ii) not prone to underestimation of true uncertainty. We investigate smoothed distance to data as a metric, and show that it not only stably converges to data, but also allows us to analyze model bias with Lipschitz constants. Moreover, we establish an equivalence between smoothed distance to data and data likelihood, which allows us to use score-matching techniques to learn gradients of distance to data. Importantly, we show that offline model-based policy search problems that maximize data likelihood do not require values of likelihood; but rather only the gradient of the log likelihood (the score function). Using this insight, we propose Score-Guided Planning (SGP), a planning algorithm for offline RL that utilizes score-matching to enable first-order planning in high-dimensional problems, where zeroth-order methods were unable to scale, and ensembles were unable to overcome local minima. Website: https://sites.google.com/view/score-guided-planning/home
PDF Glen Chou, Hongkai Dai, and Lujie Yang contributed equally to this work
点此查看论文截图
DiffMix: Diffusion Model-based Data Synthesis for Nuclei Segmentation and Classification in Imbalanced Pathology Image Datasets
Authors:Hyun-Jic Oh, Won-Ki Jeong
Nuclei segmentation and classification is a significant process in pathology image analysis. Deep learning-based approaches have greatly contributed to the higher accuracy of this task. However, those approaches suffer from the imbalanced nuclei data composition, which shows lower classification performance on the rare nuclei class. In this paper, we propose a realistic data synthesis method using a diffusion model. We generate two types of virtual patches to enlarge the training data distribution, which is for balancing the nuclei class variance and for enlarging the chance to look at various nuclei. After that, we use a semantic-label-conditioned diffusion model to generate realistic and high-quality image samples. We demonstrate the efficacy of our method by experiment results on two imbalanced nuclei datasets, improving the state-of-the-art networks. The experimental results suggest that the proposed method improves the classification performance of the rare type nuclei classification, while showing superior segmentation and classification performance in imbalanced pathology nuclei datasets.
PDF MICCAI 2023 accepted
点此查看论文截图
DomainStudio: Fine-Tuning Diffusion Models for Domain-Driven Image Generation using Limited Data
Authors:Jingyuan Zhu, Huimin Ma, Jiansheng Chen, Jian Yuan
Denoising diffusion probabilistic models (DDPMs) have been proven capable of synthesizing high-quality images with remarkable diversity when trained on large amounts of data. Typical diffusion models and modern large-scale conditional generative models like text-to-image generative models are vulnerable to overfitting when fine-tuned on extremely limited data. Existing works have explored subject-driven generation using a reference set containing a few images. However, few prior works explore DDPM-based domain-driven generation, which aims to learn the common features of target domains while maintaining diversity. This paper proposes a novel DomainStudio approach to adapt DDPMs pre-trained on large-scale source datasets to target domains using limited data. It is designed to keep the diversity of subjects provided by source domains and get high-quality and diverse adapted samples in target domains. We propose to keep the relative distances between adapted samples to achieve considerable generation diversity. In addition, we further enhance the learning of high-frequency details for better generation quality. Our approach is compatible with both unconditional and conditional diffusion models. This work makes the first attempt to realize unconditional few-shot image generation with diffusion models, achieving better quality and greater diversity than current state-of-the-art GAN-based approaches. Moreover, this work also significantly relieves overfitting for conditional generation and realizes high-quality domain-driven generation, further expanding the applicable scenarios of modern large-scale text-to-image models.
PDF extended from DDPM-PA (arXiv:2211.03264), 33 pages, 34 figures
点此查看论文截图
Diffusion Model Based Low-Light Image Enhancement for Space Satellite
Authors:Yiman Zhu, Lu Wang, Jingyi Yuan, Yu Guo
Space-based visible camera is an important sensor for space situation awareness during proximity operations. However, visible camera can be easily affected by the low illumination in the space environment. Recently, deep learning approaches have achieved remarkable success in image enhancement of natural images datasets, but seldom applied in space due to the data bottleneck. In this article, we propose a data-driven method for low-light image enhancement (LLIE) of spin targets in space environment based on diffusion model. Firstly, a dataset collection scheme is devised. To reduce the domain gap and improve the diversity and quality of the dataset, we collect the data with the camera on a ground-test system imitating the low lighting conditions and relative attitude change of satellite in space. The satellite motion is controlled by a 6-DoF robot. To generate different poses, a advanced sampling method is combined with collision detection in physical simulation. The entire process is automated. Based on our dataset, a novel diffusion model is proposed. The diffusion and denoising process are directly conducted on the grayscale channel to save computational resources. To take advantage of the inner information of RGB channels, we rescale the RGB feature maps and insert them into the downsampling layers to help feature extraction. The enhanced results with our method have been verified to be better in image light enhancement and competitive in image quality compared with previous methods. To the best of our knowledge, this is the first work of LLIE using diffusion model.
PDF
点此查看论文截图
An Evolution Kernel Method for Graph Classification through Heat Diffusion Dynamics
Authors:Xue Liu, Dan Sun, Wei Wei, Zhiming Zheng
Autonomous individuals establish a structural complex system through pairwise connections and interactions. Notably, the evolution reflects the dynamic nature of each complex system since it recodes a series of temporal changes from the past, the present into the future. Different systems follow distinct evolutionary trajectories, which can serve as distinguishing traits for system classification. However, modeling a complex system’s evolution is challenging for the graph model because the graph is typically a snapshot of the static status of a system, and thereby hard to manifest the long-term evolutionary traits of a system entirely. To address this challenge, we suggest utilizing a heat-driven method to generate temporal graph augmentation. This approach incorporates the physics-based heat kernel and DropNode technique to transform each static graph into a sequence of temporal ones. This approach effectively describes the evolutional behaviours of the system, including the retention or disappearance of elements at each time point based on the distributed heat on each node. Additionally, we propose a dynamic time-wrapping distance GDTW to quantitatively measure the distance between pairwise evolutionary systems through optimal matching. The resulting approach, called the Evolution Kernel method, has been successfully applied to classification problems in real-world structural graph datasets. The results yield significant improvements in supervised classification accuracy over a series of baseline methods.
PDF
点此查看论文截图
ProtoDiff: Learning to Learn Prototypical Networks by Task-Guided Diffusion
Authors:Yingjun Du, Zehao Xiao, Shengcai Liao, Cees Snoek
Prototype-based meta-learning has emerged as a powerful technique for addressing few-shot learning challenges. However, estimating a deterministic prototype using a simple average function from a limited number of examples remains a fragile process. To overcome this limitation, we introduce ProtoDiff, a novel framework that leverages a task-guided diffusion model during the meta-training phase to gradually generate prototypes, thereby providing efficient class representations. Specifically, a set of prototypes is optimized to achieve per-task prototype overfitting, enabling accurately obtaining the overfitted prototypes for individual tasks. Furthermore, we introduce a task-guided diffusion process within the prototype space, enabling the meta-learning of a generative process that transitions from a vanilla prototype to an overfitted prototype. ProtoDiff gradually generates task-specific prototypes from random noise during the meta-test stage, conditioned on the limited samples available for the new task. Furthermore, to expedite training and enhance ProtoDiff’s performance, we propose the utilization of residual prototype learning, which leverages the sparsity of the residual prototype. We conduct thorough ablation studies to demonstrate its ability to accurately capture the underlying prototype distribution and enhance generalization. The new state-of-the-art performance on within-domain, cross-domain, and few-task few-shot classification further substantiates the benefit of ProtoDiff.
PDF Under review
点此查看论文截图
Restart Sampling for Improving Generative Processes
Authors:Yilun Xu, Mingyang Deng, Xiang Cheng, Yonglong Tian, Ziming Liu, Tommi Jaakkola
Generative processes that involve solving differential equations, such as diffusion models, frequently necessitate balancing speed and quality. ODE-based samplers are fast but plateau in performance while SDE-based samplers deliver higher sample quality at the cost of increased sampling time. We attribute this difference to sampling errors: ODE-samplers involve smaller discretization errors while stochasticity in SDE contracts accumulated errors. Based on these findings, we propose a novel sampling algorithm called Restart in order to better balance discretization errors and contraction. The sampling method alternates between adding substantial noise in additional forward steps and strictly following a backward ODE. Empirically, Restart sampler surpasses previous SDE and ODE samplers in both speed and accuracy. Restart not only outperforms the previous best SDE results, but also accelerates the sampling speed by 10-fold / 2-fold on CIFAR-10 / ImageNet $64 \times 64$. In addition, it attains significantly better sample quality than ODE samplers within comparable sampling times. Moreover, Restart better balances text-image alignment/visual quality versus diversity than previous samplers in the large-scale text-to-image Stable Diffusion model pre-trained on LAION $512 \times 512$. Code is available at https://github.com/Newbeeer/diffusion_restart_sampling
PDF Code is available at https://github.com/Newbeeer/diffusion_restart_sampling