2023-06-22 更新
CAMMARL: Conformal Action Modeling in Multi Agent Reinforcement Learning
Authors:Nikunj Gupta, Samira Ebrahimi Kahou
Before taking actions in an environment with more than one intelligent agent, an autonomous agent may benefit from reasoning about the other agents and utilizing a notion of a guarantee or confidence about the behavior of the system. In this article, we propose a novel multi-agent reinforcement learning (MARL) algorithm CAMMARL, which involves modeling the actions of other agents in different situations in the form of confident sets, i.e., sets containing their true actions with a high probability. We then use these estimates to inform an agent’s decision-making. For estimating such sets, we use the concept of conformal predictions, by means of which, we not only obtain an estimate of the most probable outcome but get to quantify the operable uncertainty as well. For instance, we can predict a set that provably covers the true predictions with high probabilities (e.g., 95%). Through several experiments in two fully cooperative multi-agent tasks, we show that CAMMARL elevates the capabilities of an autonomous agent in MARL by modeling conformal prediction sets over the behavior of other agents in the environment and utilizing such estimates to enhance its policy learning. All developed codes can be found here: https://github.com/Nikunj-Gupta/conformal-agent-modelling.
PDF
点此查看论文截图
Adversarial Search and Track with Multiagent Reinforcement Learning in Sparsely Observable Environment
Authors:Zixuan Wu, Sean Ye, Manisha Natarajan, Letian Chen, Rohan Paleja, Matthew C. Gombolay
We study a search and tracking (S&T) problem for a team of dynamic search agents to capture an adversarial evasive agent with only sparse temporal and spatial knowledge of its location in this paper. The domain is challenging for traditional Reinforcement Learning (RL) approaches as the large space leads to sparse observations of the adversary and in turn sparse rewards for the search agents. Additionally, the opponent’s behavior is reactionary to the search agents, which causes a data distribution shift for RL during training as search agents improve their policies. We propose a differentiable Multi-Agent RL (MARL) architecture that utilizes a novel filtering module to supplement estimated adversary location information and enables the effective learning of a team policy. Our algorithm learns how to balance information from prior knowledge and a motion model to remain resilient to the data distribution shift and outperforms all baseline methods with a 46% increase of detection rate.
PDF Submitted to IEEE/RSJ International Conference on Intelligent Robots (IROS) 2023