2023-06-22 更新
Residual Spatial Fusion Network for RGB-Thermal Semantic Segmentation
Authors:Ping Li, Junjie Chen, Binbin Lin, Xianghua Xu
Semantic segmentation plays an important role in widespread applications such as autonomous driving and robotic sensing. Traditional methods mostly use RGB images which are heavily affected by lighting conditions, \eg, darkness. Recent studies show thermal images are robust to the night scenario as a compensating modality for segmentation. However, existing works either simply fuse RGB-Thermal (RGB-T) images or adopt the encoder with the same structure for both the RGB stream and the thermal stream, which neglects the modality difference in segmentation under varying lighting conditions. Therefore, this work proposes a Residual Spatial Fusion Network (RSFNet) for RGB-T semantic segmentation. Specifically, we employ an asymmetric encoder to learn the compensating features of the RGB and the thermal images. To effectively fuse the dual-modality features, we generate the pseudo-labels by saliency detection to supervise the feature learning, and develop the Residual Spatial Fusion (RSF) module with structural re-parameterization to learn more promising features by spatially fusing the cross-modality features. RSF employs a hierarchical feature fusion to aggregate multi-level features, and applies the spatial weights with the residual connection to adaptively control the multi-spectral feature fusion by the confidence gate. Extensive experiments were carried out on two benchmarks, \ie, MFNet database and PST900 database. The results have shown the state-of-the-art segmentation performance of our method, which achieves a good balance between accuracy and speed.
PDF
点此查看论文截图
Hyperbolic Active Learning for Semantic Segmentation under Domain Shift
Authors:Luca Franco, Paolo Mandica, Konstantinos Kallidromitis, Devin Guillory, Yu-Teng Li, Fabio Galasso
For the task of semantic segmentation (SS) under domain shift, active learning (AL) acquisition strategies based on image regions and pseudo labels are state-of-the-art (SoA). The presence of diverse pseudo-labels within a region identifies pixels between different classes, which is a labeling efficient active learning data acquisition strategy. However, by design, pseudo-label variations are limited to only select the contours of classes, limiting the final AL performance. We approach AL for SS in the Poincar\’e hyperbolic ball model for the first time and leverage the variations of the radii of pixel embeddings within regions as a novel data acquisition strategy. This stems from a novel geometric property of a hyperbolic space trained without enforced hierarchies, which we experimentally prove. Namely, classes are mapped into compact hyperbolic areas with a comparable intra-class radii variance, as the model places classes of increasing explainable difficulty at denser hyperbolic areas, i.e. closer to the Poincar\’e ball edge. The variation of pixel embedding radii identifies well the class contours, but they also select a few intra-class peculiar details, which boosts the final performance. Our proposed HALO (Hyperbolic Active Learning Optimization) surpasses the supervised learning performance for the first time in AL for SS under domain shift, by only using a small portion of labels (i.e., 1%). The extensive experimental analysis is based on two established benchmarks, i.e. GTAV $\rightarrow$ Cityscapes and SYNTHIA $\rightarrow$ Cityscapes, where we set a new SoA. The code will be released.
PDF
点此查看论文截图
Few-Shot Rotation-Invariant Aerial Image Semantic Segmentation
Authors:Qinglong Cao, Yuntian Chen, Chao Ma, Xiaokang Yang
Few-shot aerial image segmentation is a challenging task that involves precisely parsing objects in query aerial images with limited annotated support. Conventional matching methods without consideration of varying object orientations can fail to activate same-category objects with different orientations. Moreover, conventional algorithms can lead to false recognition of lower-scored rotated semantic objects. In response to these challenges, the authors propose a novel few-shot rotation-invariant aerial semantic segmentation network (FRINet). FRINet matches each query feature rotation-adaptively with orientation-varying yet category-consistent support information. The segmentation predictions from different orientations are supervised by the same label, and the backbones are pre-trained in the base category to boost segmentation performance. Experimental results demonstrate that FRINet achieves state-of-the-art performance in few-shot aerial semantic segmentation benchmark.
PDF
点此查看论文截图
A Comprehensive Study on the Robustness of Image Classification and Object Detection in Remote Sensing: Surveying and Benchmarking
Authors:Shaohui Mei, Jiawei Lian, Xiaofei Wang, Yuru Su, Mingyang Ma, Lap-Pui Chau
Deep neural networks (DNNs) have found widespread applications in interpreting remote sensing (RS) imagery. However, it has been demonstrated in previous works that DNNs are vulnerable to different types of noises, particularly adversarial noises. Surprisingly, there has been a lack of comprehensive studies on the robustness of RS tasks, prompting us to undertake a thorough survey and benchmark on the robustness of image classification and object detection in RS. To our best knowledge, this study represents the first comprehensive examination of both natural robustness and adversarial robustness in RS tasks. Specifically, we have curated and made publicly available datasets that contain natural and adversarial noises. These datasets serve as valuable resources for evaluating the robustness of DNNs-based models. To provide a comprehensive assessment of model robustness, we conducted meticulous experiments with numerous different classifiers and detectors, encompassing a wide range of mainstream methods. Through rigorous evaluation, we have uncovered insightful and intriguing findings, which shed light on the relationship between adversarial noise crafting and model training, yielding a deeper understanding of the susceptibility and limitations of various models, and providing guidance for the development of more resilient and robust models
PDF
点此查看论文截图
Exploiting Multimodal Synthetic Data for Egocentric Human-Object Interaction Detection in an Industrial Scenario
Authors:Rosario Leonardi, Francesco Ragusa, Antonino Furnari, Giovanni Maria Farinella
In this paper, we tackle the problem of Egocentric Human-Object Interaction (EHOI) detection in an industrial setting. To overcome the lack of public datasets in this context, we propose a pipeline and a tool for generating synthetic images of EHOIs paired with several annotations and data signals (e.g., depth maps or instance segmentation masks). Using the proposed pipeline, we present EgoISM-HOI a new multimodal dataset composed of synthetic EHOI images in an industrial environment with rich annotations of hands and objects. To demonstrate the utility and effectiveness of synthetic EHOI data produced by the proposed tool, we designed a new method that predicts and combines different multimodal signals to detect EHOIs in RGB images. Our study shows that exploiting synthetic data to pre-train the proposed method significantly improves performance when tested on real-world data. Moreover, the proposed approach outperforms state-of-the-art class-agnostic methods. To support research in this field, we publicly release the datasets, source code, and pre-trained models at https://iplab.dmi.unict.it/egoism-hoi.
PDF