Domain Adaptation


2023-06-22 更新

Multilingual Multiword Expression Identification Using Lateral Inhibition and Domain Adaptation

Authors:Andrei-Marius Avram, Verginica Barbu Mititelu, Vasile Păiş, Dumitru-Clementin Cercel, Ştefan Trăuşan-Matu

Correctly identifying multiword expressions (MWEs) is an important task for most natural language processing systems since their misidentification can result in ambiguity and misunderstanding of the underlying text. In this work, we evaluate the performance of the mBERT model for MWE identification in a multilingual context by training it on all 14 languages available in version 1.2 of the PARSEME corpus. We also incorporate lateral inhibition and language adversarial training into our methodology to create language-independent embeddings and improve its capabilities in identifying multiword expressions. The evaluation of our models shows that the approach employed in this work achieves better results compared to the best system of the PARSEME 1.2 competition, MTLB-STRUCT, on 11 out of 14 languages for global MWE identification and on 12 out of 14 languages for unseen MWE identification. Additionally, averaged across all languages, our best approach outperforms the MTLB-STRUCT system by 1.23% on global MWE identification and by 4.73% on unseen global MWE identification.
PDF Accepted at Mathematics 2023

点此查看论文截图

Dual Adaptive Representation Alignment for Cross-domain Few-shot Learning

Authors:Yifan Zhao, Tong Zhang, Jia Li, Yonghong Tian

Few-shot learning aims to recognize novel queries with limited support samples by learning from base knowledge. Recent progress in this setting assumes that the base knowledge and novel query samples are distributed in the same domains, which are usually infeasible for realistic applications. Toward this issue, we propose to address the cross-domain few-shot learning problem where only extremely few samples are available in target domains. Under this realistic setting, we focus on the fast adaptation capability of meta-learners by proposing an effective dual adaptive representation alignment approach. In our approach, a prototypical feature alignment is first proposed to recalibrate support instances as prototypes and reproject these prototypes with a differentiable closed-form solution. Therefore feature spaces of learned knowledge can be adaptively transformed to query spaces by the cross-instance and cross-prototype relations. Besides the feature alignment, we further present a normalized distribution alignment module, which exploits prior statistics of query samples for solving the covariant shifts among the support and query samples. With these two modules, a progressive meta-learning framework is constructed to perform the fast adaptation with extremely few-shot samples while maintaining its generalization capabilities. Experimental evidence demonstrates our approach achieves new state-of-the-art results on 4 CDFSL benchmarks and 4 fine-grained cross-domain benchmarks.
PDF 13 pages; Accepted by IEEE T-PAMI

点此查看论文截图

SURT 2.0: Advances in Transducer-based Multi-talker Speech Recognition

Authors:Desh Raj, Daniel Povey, Sanjeev Khudanpur

The Streaming Unmixing and Recognition Transducer (SURT) model was proposed recently as an end-to-end approach for continuous, streaming, multi-talker speech recognition (ASR). Despite impressive results on multi-turn meetings, SURT has notable limitations: (i) it suffers from leakage and omission related errors; (ii) it is computationally expensive, due to which it has not seen adoption in academia; and (iii) it has only been evaluated on synthetic mixtures. In this work, we propose several modifications to the original SURT which are carefully designed to fix the above limitations. In particular, we (i) change the unmixing module to a mask estimator that uses dual-path modeling, (ii) use a streaming zipformer encoder and a stateless decoder for the transducer, (iii) perform mixture simulation using force-aligned subsegments, (iv) pre-train the transducer on single-speaker data, (v) use auxiliary objectives in the form of masking loss and encoder CTC loss, and (vi) perform domain adaptation for far-field recognition. We show that our modifications allow SURT 2.0 to outperform its predecessor in terms of multi-talker ASR results, while being efficient enough to train with academic resources. We conduct our evaluations on 3 publicly available meeting benchmarks — LibriCSS, AMI, and ICSI, where our best model achieves WERs of 16.9%, 44.6% and 32.2%, respectively, on far-field unsegmented recordings. We release training recipes and pre-trained models: https://sites.google.com/view/surt2.
PDF 13 pages, 6 figures. Project webpage: https://sites.google.com/view/surt2

点此查看论文截图

Path to Medical AGI: Unify Domain-specific Medical LLMs with the Lowest Cost

Authors:Juexiao Zhou, Xiuying Chen, Xin Gao

Medical artificial general intelligence (AGI) is an emerging field that aims to develop systems specifically designed for medical applications that possess the ability to understand, learn, and apply knowledge across a wide range of tasks and domains. Large language models (LLMs) represent a significant step towards AGI. However, training cross-domain LLMs in the medical field poses significant challenges primarily attributed to the requirement of collecting data from diverse domains. This task becomes particularly difficult due to privacy restrictions and the scarcity of publicly available medical datasets. Here, we propose Medical AGI (MedAGI), a paradigm to unify domain-specific medical LLMs with the lowest cost, and suggest a possible path to achieve medical AGI. With an increasing number of domain-specific professional multimodal LLMs in the medical field being developed, MedAGI is designed to automatically select appropriate medical models by analyzing users’ questions with our novel adaptive expert selection algorithm. It offers a unified approach to existing LLMs in the medical field, eliminating the need for retraining regardless of the introduction of new models. This characteristic renders it a future-proof solution in the dynamically advancing medical domain. To showcase the resilience of MedAGI, we conducted an evaluation across three distinct medical domains: dermatology diagnosis, X-ray diagnosis, and analysis of pathology pictures. The results demonstrated that MedAGI exhibited remarkable versatility and scalability, delivering exceptional performance across diverse domains. Our code is publicly available to facilitate further research at https://github.com/JoshuaChou2018/MedAGI.
PDF

点此查看论文截图

FSAR: Federated Skeleton-based Action Recognition with Adaptive Topology Structure and Knowledge Distillation

Authors:Jingwen Guo, Hong Liu, Shitong Sun, Tianyu Guo, Min Zhang, Chenyang Si

Existing skeleton-based action recognition methods typically follow a centralized learning paradigm, which can pose privacy concerns when exposing human-related videos. Federated Learning (FL) has attracted much attention due to its outstanding advantages in privacy-preserving. However, directly applying FL approaches to skeleton videos suffers from unstable training. In this paper, we investigate and discover that the heterogeneous human topology graph structure is the crucial factor hindering training stability. To address this limitation, we pioneer a novel Federated Skeleton-based Action Recognition (FSAR) paradigm, which enables the construction of a globally generalized model without accessing local sensitive data. Specifically, we introduce an Adaptive Topology Structure (ATS), separating generalization and personalization by learning a domain-invariant topology shared across clients and a domain-specific topology decoupled from global model aggregation.Furthermore, we explore Multi-grain Knowledge Distillation (MKD) to mitigate the discrepancy between clients and server caused by distinct updating patterns through aligning shallow block-wise motion features. Extensive experiments on multiple datasets demonstrate that FSAR outperforms state-of-the-art FL-based methods while inherently protecting privacy.
PDF

点此查看论文截图

EvolveMT: an Ensemble MT Engine Improving Itself with Usage Only

Authors:Kamer Ali Yuksel, Ahmet Gunduz, Mohamed Al-Badrashiny, Shreyas Sharma, Hassan Sawaf

This paper presents EvolveMT for efficiently combining multiple machine translation (MT) engines. The proposed system selects the output from a single engine for each segment by utilizing online learning techniques to predict the most suitable system for every translation request. A neural quality estimation metric supervises the method without requiring reference translations. The online learning capability of this system allows for dynamic adaptation to alterations in the domain or machine translation engines, thereby obviating the necessity for additional training. EvolveMT selects a subset of translation engines to be called based on the source sentence features. The degree of exploration is configurable according to the desired quality-cost trade-off. Results from custom datasets demonstrate that EvolveMT achieves similar translation accuracy at a lower cost than selecting the best translation of each segment from all translations using an MT quality estimator. To our knowledge, EvolveMT is the first meta MT system that adapts itself after deployment to incoming translation requests from the production environment without needing costly retraining on human feedback.
PDF

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录