Domain Adaptation


2023-06-19 更新

UTOPIA: Unconstrained Tracking Objects without Preliminary Examination via Cross-Domain Adaptation

Authors:Pha Nguyen, Kha Gia Quach, John Gauch, Samee U. Khan, Bhiksha Raj, Khoa Luu

Multiple Object Tracking (MOT) aims to find bounding boxes and identities of targeted objects in consecutive video frames. While fully-supervised MOT methods have achieved high accuracy on existing datasets, they cannot generalize well on a newly obtained dataset or a new unseen domain. In this work, we first address the MOT problem from the cross-domain point of view, imitating the process of new data acquisition in practice. Then, a new cross-domain MOT adaptation from existing datasets is proposed without any pre-defined human knowledge in understanding and modeling objects. It can also learn and update itself from the target data feedback. The intensive experiments are designed on four challenging settings, including MOTSynth to MOT17, MOT17 to MOT20, MOT17 to VisDrone, and MOT17 to DanceTrack. We then prove the adaptability of the proposed self-supervised learning strategy. The experiments also show superior performance on tracking metrics MOTA and IDF1, compared to fully supervised, unsupervised, and self-supervised state-of-the-art methods.
PDF

点此查看论文截图

DisasterNets: Embedding Machine Learning in Disaster Mapping

Authors:Qingsong Xu, Yilei Shi, Xiao Xiang Zhu

Disaster mapping is a critical task that often requires on-site experts and is time-consuming. To address this, a comprehensive framework is presented for fast and accurate recognition of disasters using machine learning, termed DisasterNets. It consists of two stages, space granulation and attribute granulation. The space granulation stage leverages supervised/semi-supervised learning, unsupervised change detection, and domain adaptation with/without source data techniques to handle different disaster mapping scenarios. Furthermore, the disaster database with the corresponding geographic information field properties is built by using the attribute granulation stage. The framework is applied to earthquake-triggered landslide mapping and large-scale flood mapping. The results demonstrate a competitive performance for high-precision, high-efficiency, and cross-scene recognition of disasters. To bridge the gap between disaster mapping and machine learning communities, we will provide an openly accessible tool based on DisasterNets. The framework and tool will be available at https://github.com/HydroPML/DisasterNets.
PDF 4 pages, IEEE IGARSS 2023

点此查看论文截图

ClinicalGPT: Large Language Models Finetuned with Diverse Medical Data and Comprehensive Evaluation

Authors:Guangyu Wang, Guoxing Yang, Zongxin Du, Longjun Fan, Xiaohu Li

Large language models have exhibited exceptional performance on various Natural Language Processing (NLP) tasks, leveraging techniques such as the pre-training, and instruction fine-tuning. Despite these advances, their effectiveness in medical applications is limited, due to challenges such as factual inaccuracies, reasoning abilities, and lack grounding in real-world experience. In this study, we present ClinicalGPT, a language model explicitly designed and optimized for clinical scenarios. By incorporating extensive and diverse real-world data, such as medical records, domain-specific knowledge, and multi-round dialogue consultations in the training process, ClinicalGPT is better prepared to handle multiple clinical task. Furthermore, we introduce a comprehensive evaluation framework that includes medical knowledge question-answering, medical exams, patient consultations, and diagnostic analysis of medical records. Our results demonstrate that ClinicalGPT significantly outperforms other models in these tasks, highlighting the effectiveness of our approach in adapting large language models to the critical domain of healthcare.
PDF

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录