2023-06-16 更新
Improving Generalization in Meta-Learning via Meta-Gradient Augmentation
Authors:Ren Wang, Haoliang Sun, Qi Wei, Xiushan Nie, Yuling Ma, Yilong Yin
Meta-learning methods typically follow a two-loop framework, where each loop potentially suffers from notorious overfitting, hindering rapid adaptation and generalization to new tasks. Existing schemes solve it by enhancing the mutual-exclusivity or diversity of training samples, but these data manipulation strategies are data-dependent and insufficiently flexible. This work alleviates overfitting in meta-learning from the perspective of gradient regularization and proposes a data-independent \textbf{M}eta-\textbf{G}radient \textbf{Aug}mentation (\textbf{MGAug}) method. The key idea is to first break the rote memories by network pruning to address memorization overfitting in the inner loop, and then the gradients of pruned sub-networks naturally form the high-quality augmentation of the meta-gradient to alleviate learner overfitting in the outer loop. Specifically, we explore three pruning strategies, including \textit{random width pruning}, \textit{random parameter pruning}, and a newly proposed \textit{catfish pruning} that measures a Meta-Memorization Carrying Amount (MMCA) score for each parameter and prunes high-score ones to break rote memories as much as possible. The proposed MGAug is theoretically guaranteed by the generalization bound from the PAC-Bayes framework. In addition, we extend a lightweight version, called MGAug-MaxUp, as a trade-off between performance gains and resource overhead. Extensive experiments on multiple few-shot learning benchmarks validate MGAug’s effectiveness and significant improvement over various meta-baselines. The code is publicly available at \url{https://github.com/xxLifeLover/Meta-Gradient-Augmentation}.
PDF
点此查看论文截图
TomoSAM: a 3D Slicer extension using SAM for tomography segmentation
Authors:Federico Semeraro, Alexandre Quintart, Sergio Fraile Izquierdo, Joseph C. Ferguson
TomoSAM has been developed to integrate the cutting-edge Segment Anything Model (SAM) into 3D Slicer, a highly capable software platform used for 3D image processing and visualization. SAM is a promptable deep learning model that is able to identify objects and create image masks in a zero-shot manner, based only on a few user clicks. The synergy between these tools aids in the segmentation of complex 3D datasets from tomography or other imaging techniques, which would otherwise require a laborious manual segmentation process. The source code associated with this article can be found at https://github.com/fsemerar/SlicerTomoSAM
PDF
点此查看论文截图
Norm-guided latent space exploration for text-to-image generation
Authors:Dvir Samuel, Rami Ben-Ari, Nir Darshan, Haggai Maron, Gal Chechik
Text-to-image diffusion models show great potential in synthesizing a large variety of concepts in new compositions and scenarios. However, their latent seed space is still not well understood and has been shown to have an impact in generating new and rare concepts. Specifically, simple operations like interpolation and centroid finding work poorly with the standard Euclidean and spherical metrics in the latent space. This paper makes the observation that current training procedures make diffusion models biased toward inputs with a narrow range of norm values. This has strong implications for methods that rely on seed manipulation for image generation that can be further applied to few-shot and long-tail learning tasks. To address this issue, we propose a novel method for interpolating between two seeds and demonstrate that it defines a new non-Euclidean metric that takes into account a norm-based prior on seeds. We describe a simple yet efficient algorithm for approximating this metric and use it to further define centroids in the latent seed space. We show that our new interpolation and centroid evaluation techniques significantly enhance the generation of rare concept images. This further leads to state-of-the-art performance on few-shot and long-tail benchmarks, improving prior approach in terms of generation speed, image quality, and semantic content.
PDF
点此查看论文截图
MetricPrompt: Prompting Model as a Relevance Metric for Few-shot Text Classification
Authors:Hongyuan Dong, Weinan Zhang, Wanxiang Che
Prompting methods have shown impressive performance in a variety of text mining tasks and applications, especially few-shot ones. Despite the promising prospects, the performance of prompting model largely depends on the design of prompt template and verbalizer. In this work, we propose MetricPrompt, which eases verbalizer design difficulty by reformulating few-shot text classification task into text pair relevance estimation task. MetricPrompt adopts prompting model as the relevance metric, further bridging the gap between Pre-trained Language Model’s (PLM) pre-training objective and text classification task, making possible PLM’s smooth adaption. Taking a training sample and a query one simultaneously, MetricPrompt captures cross-sample relevance information for accurate relevance estimation. We conduct experiments on three widely used text classification datasets across four few-shot settings. Results show that MetricPrompt outperforms manual verbalizer and other automatic verbalizer design methods across all few-shot settings, achieving new state-of-the-art (SOTA) performance.
PDF Accepted at KDD 2023
点此查看论文截图
Exploring the MIT Mathematics and EECS Curriculum Using Large Language Models
Authors:Sarah J. Zhang, Samuel Florin, Ariel N. Lee, Eamon Niknafs, Andrei Marginean, Annie Wang, Keith Tyser, Zad Chin, Yann Hicke, Nikhil Singh, Madeleine Udell, Yoon Kim, Tonio Buonassisi, Armando Solar-Lezama, Iddo Drori
We curate a comprehensive dataset of 4,550 questions and solutions from problem sets, midterm exams, and final exams across all MIT Mathematics and Electrical Engineering and Computer Science (EECS) courses required for obtaining a degree. We evaluate the ability of large language models to fulfill the graduation requirements for any MIT major in Mathematics and EECS. Our results demonstrate that GPT-3.5 successfully solves a third of the entire MIT curriculum, while GPT-4, with prompt engineering, achieves a perfect solve rate on a test set excluding questions based on images. We fine-tune an open-source large language model on this dataset. We employ GPT-4 to automatically grade model responses, providing a detailed performance breakdown by course, question, and answer type. By embedding questions in a low-dimensional space, we explore the relationships between questions, topics, and classes and discover which questions and classes are required for solving other questions and classes through few-shot learning. Our analysis offers valuable insights into course prerequisites and curriculum design, highlighting language models’ potential for learning and improving Mathematics and EECS education.
PDF 20 pages, 18 tables, 4 figures
点此查看论文截图
Neural Fine-Tuning Search for Few-Shot Learning
Authors:Panagiotis Eustratiadis, Łukasz Dudziak, Da Li, Timothy Hospedales
In few-shot recognition, a classifier that has been trained on one set of classes is required to rapidly adapt and generalize to a disjoint, novel set of classes. To that end, recent studies have shown the efficacy of fine-tuning with carefully crafted adaptation architectures. However this raises the question of: How can one design the optimal adaptation strategy? In this paper, we study this question through the lens of neural architecture search (NAS). Given a pre-trained neural network, our algorithm discovers the optimal arrangement of adapters, which layers to keep frozen and which to fine-tune. We demonstrate the generality of our NAS method by applying it to both residual networks and vision transformers and report state-of-the-art performance on Meta-Dataset and Meta-Album.
PDF
点此查看论文截图
Can Language Models Teach Weaker Agents? Teacher Explanations Improve Students via Theory of Mind
Authors:Swarnadeep Saha, Peter Hase, Mohit Bansal
Large Language Models (LLMs) perform complex reasoning by generating explanations for their predictions. However, a complementary goal of explanations is to also communicate useful knowledge that improves weaker agents. Hence, we investigate whether LLMs also make good teachers for weaker agents. In particular, we consider a student-teacher framework between two LLM agents and study if, when, and how the teacher should intervene with natural language explanations to improve the student’s performance. Since communication is expensive, we define a budget such that the teacher only communicates explanations for a fraction of the data, after which the student should perform well on its own. We decompose the teaching problem along four axes: (1) if teacher’s test time intervention improve student predictions, (2) when it is worth explaining a data point, (3) how the teacher should personalize explanations to better teach the student, and (4) if teacher explanations also improve student performance on future unexplained data. We first show that teacher LLMs can indeed intervene on student reasoning to improve their performance. Next, we propose a Theory of Mind approach, in which the teacher builds two few-shot mental models of the student. The first model defines an Intervention Function that simulates the utility of an intervention, allowing the teacher to intervene when this utility is the highest and improving student performance at lower budgets. The second model enables the teacher to personalize explanations for a particular student and outperform unpersonalized teachers. We also demonstrate that in multi-turn interactions, teacher explanations generalize and learning from explained data improves student performance on future unexplained data. Finally, we also verify that misaligned teachers can lower student performance to random chance by intentionally misleading them.
PDF 21 pages, 12 figures. Our code is available at https://github.com/swarnaHub/ExplanationIntervention
点此查看论文截图
Segment Any Point Cloud Sequences by Distilling Vision Foundation Models
Authors:Youquan Liu, Lingdong Kong, Jun Cen, Runnan Chen, Wenwei Zhang, Liang Pan, Kai Chen, Ziwei Liu
Recent advancements in vision foundation models (VFMs) have opened up new possibilities for versatile and efficient visual perception. In this work, we introduce Seal, a novel framework that harnesses VFMs for segmenting diverse automotive point cloud sequences. Seal exhibits three appealing properties: i) Scalability: VFMs are directly distilled into point clouds, eliminating the need for annotations in either 2D or 3D during pretraining. ii) Consistency: Spatial and temporal relationships are enforced at both the camera-to-LiDAR and point-to-segment stages, facilitating cross-modal representation learning. iii) Generalizability: Seal enables knowledge transfer in an off-the-shelf manner to downstream tasks involving diverse point clouds, including those from real/synthetic, low/high-resolution, large/small-scale, and clean/corrupted datasets. Extensive experiments conducted on eleven different point cloud datasets showcase the effectiveness and superiority of Seal. Notably, Seal achieves a remarkable 45.0% mIoU on nuScenes after linear probing, surpassing random initialization by 36.9% mIoU and outperforming prior arts by 6.1% mIoU. Moreover, Seal demonstrates significant performance gains over existing methods across 20 different few-shot fine-tuning tasks on all eleven tested point cloud datasets.
PDF Preprint; 36 pages, 16 figures, 14 tables; Code at https://github.com/youquanl/Segment-Any-Point-Cloud