Diffusion Models


2023-06-16 更新

Adding 3D Geometry Control to Diffusion Models

Authors:Wufei Ma, Qihao Liu, Jiahao Wang, Angtian Wang, Yaoyao Liu, Adam Kortylewski, Alan Yuille

Diffusion models have emerged as a powerful method of generative modeling across a range of fields, capable of producing stunning photo-realistic images from natural language descriptions. However, these models lack explicit control over the 3D structure of the objects in the generated images. In this paper, we propose a novel method that incorporates 3D geometry control into diffusion models, making them generate even more realistic and diverse images. To achieve this, our method exploits ControlNet, which extends diffusion models by using visual prompts in addition to text prompts. We generate images of 3D objects taken from a 3D shape repository (e.g., ShapeNet and Objaverse), render them from a variety of poses and viewing directions, compute the edge maps of the rendered images, and use these edge maps as visual prompts to generate realistic images. With explicit 3D geometry control, we can easily change the 3D structures of the objects in the generated images and obtain ground-truth 3D annotations automatically. This allows us to use the generated images to improve a lot of vision tasks, e.g., classification and 3D pose estimation, in both in-distribution (ID) and out-of-distribution (OOD) settings. We demonstrate the effectiveness of our method through extensive experiments on ImageNet-50, ImageNet-R, PASCAL3D+, ObjectNet3D, and OOD-CV datasets. The results show that our method significantly outperforms existing methods across multiple benchmarks (e.g., 4.6 percentage points on ImageNet-50 using ViT and 3.5 percentage points on PASCAL3D+ and ObjectNet3D using NeMo).
PDF

点此查看论文截图

Diffusion in Diffusion: Cyclic One-Way Diffusion for Text-Vision-Conditioned Generation

Authors:Yongqi Yang, Ruoyu Wang, Zhihao Qian, Ye Zhu, Yu Wu

Text-to-Image (T2I) generation with diffusion models allows users to control the semantic content in the synthesized images given text conditions. As a further step toward a more customized image creation application, we introduce a new multi-modality generation setting that synthesizes images based on not only the semantic-level textual input but also on the pixel-level visual conditions. Existing literature first converts the given visual information to semantic-level representation by connecting it to languages, and then incorporates it into the original denoising process. Seemingly intuitive, such methodological design loses the pixel values during the semantic transition, thus failing to fulfill the task scenario where the preservation of low-level vision is desired (e.g., ID of a given face image). To this end, we propose Cyclic One-Way Diffusion (COW), a training-free framework for creating customized images with respect to semantic text and pixel-visual conditioning. Notably, we observe that sub-regions of an image impose mutual interference, just like physical diffusion, to achieve ultimate harmony along the denoising trajectory. Thus we propose to repetitively utilize the given visual condition in a cyclic way, by planting the visual condition as a high-concentration seed'' at the initialization step of the denoising process, anddiffuse’’ it into a harmonious picture by controlling a one-way information flow from the visual condition. We repeat the destroy-and-construct process multiple times to gradually but steadily impose the internal diffusion process within the image. Experiments on the challenging one-shot face and text-conditioned image synthesis task demonstrate our superiority in terms of speed, image quality, and conditional fidelity compared to learning-based text-vision conditional methods.
PDF 24 pages including appendices

点此查看论文截图

On the Robustness of Latent Diffusion Models

Authors:Jianping Zhang, Zhuoer Xu, Shiwen Cui, Changhua Meng, Weibin Wu, Michael R. Lyu

Latent diffusion models achieve state-of-the-art performance on a variety of generative tasks, such as image synthesis and image editing. However, the robustness of latent diffusion models is not well studied. Previous works only focus on the adversarial attacks against the encoder or the output image under white-box settings, regardless of the denoising process. Therefore, in this paper, we aim to analyze the robustness of latent diffusion models more thoroughly. We first study the influence of the components inside latent diffusion models on their white-box robustness. In addition to white-box scenarios, we evaluate the black-box robustness of latent diffusion models via transfer attacks, where we consider both prompt-transfer and model-transfer settings and possible defense mechanisms. However, all these explorations need a comprehensive benchmark dataset, which is missing in the literature. Therefore, to facilitate the research of the robustness of latent diffusion models, we propose two automatic dataset construction pipelines for two kinds of image editing models and release the whole dataset. Our code and dataset are available at \url{https://github.com/jpzhang1810/LDM-Robustness}.
PDF

点此查看论文截图

GenImage: A Million-Scale Benchmark for Detecting AI-Generated Image

Authors:Mingjian Zhu, Hanting Chen, Qiangyu Yan, Xudong Huang, Guanyu Lin, Wei Li, Zhijun Tu, Hailin Hu, Jie Hu, Yunhe Wang

The extraordinary ability of generative models to generate photographic images has intensified concerns about the spread of disinformation, thereby leading to the demand for detectors capable of distinguishing between AI-generated fake images and real images. However, the lack of large datasets containing images from the most advanced image generators poses an obstacle to the development of such detectors. In this paper, we introduce the GenImage dataset, which has the following advantages: 1) Plenty of Images, including over one million pairs of AI-generated fake images and collected real images. 2) Rich Image Content, encompassing a broad range of image classes. 3) State-of-the-art Generators, synthesizing images with advanced diffusion models and GANs. The aforementioned advantages allow the detectors trained on GenImage to undergo a thorough evaluation and demonstrate strong applicability to diverse images. We conduct a comprehensive analysis of the dataset and propose two tasks for evaluating the detection method in resembling real-world scenarios. The cross-generator image classification task measures the performance of a detector trained on one generator when tested on the others. The degraded image classification task assesses the capability of the detectors in handling degraded images such as low-resolution, blurred, and compressed images. With the GenImage dataset, researchers can effectively expedite the development and evaluation of superior AI-generated image detectors in comparison to prevailing methodologies.
PDF https://github.com/Andrew-Zhu/GenImage

点此查看论文截图

Training-free Diffusion Model Adaptation for Variable-Sized Text-to-Image Synthesis

Authors:Zhiyu Jin, Xuli Shen, Bin Li, Xiangyang Xue

Diffusion models (DMs) have recently gained attention with state-of-the-art performance in text-to-image synthesis. Abiding by the tradition in deep learning, DMs are trained and evaluated on the images with fixed sizes. However, users are demanding for various images with specific sizes and various aspect ratio. This paper focuses on adapting text-to-image diffusion models to handle such variety while maintaining visual fidelity. First we observe that, during the synthesis, lower resolution images suffer from incomplete object portrayal, while higher resolution images exhibit repetitive presentation. Next, we establish a statistical relationship indicating that attention entropy changes with token quantity, suggesting that models aggregate spatial information in proportion to image resolution. The subsequent interpretation on our observations is that objects are incompletely depicted due to limited spatial information for low resolutions, while repetitive presentation arises from redundant spatial information for high resolutions. From this perspective, we propose a scaling factor to alleviate the change of attention entropy and mitigate the defective pattern observed. Extensive experimental results validate the efficacy of the proposed scaling factor, which enables the model to achieve better visual effects, image quality, and text alignment. Notably, these improvements are achieved without additional training or fine-tuning techniques.
PDF 21 pages, 12 figures

点此查看论文截图

Norm-guided latent space exploration for text-to-image generation

Authors:Dvir Samuel, Rami Ben-Ari, Nir Darshan, Haggai Maron, Gal Chechik

Text-to-image diffusion models show great potential in synthesizing a large variety of concepts in new compositions and scenarios. However, their latent seed space is still not well understood and has been shown to have an impact in generating new and rare concepts. Specifically, simple operations like interpolation and centroid finding work poorly with the standard Euclidean and spherical metrics in the latent space. This paper makes the observation that current training procedures make diffusion models biased toward inputs with a narrow range of norm values. This has strong implications for methods that rely on seed manipulation for image generation that can be further applied to few-shot and long-tail learning tasks. To address this issue, we propose a novel method for interpolating between two seeds and demonstrate that it defines a new non-Euclidean metric that takes into account a norm-based prior on seeds. We describe a simple yet efficient algorithm for approximating this metric and use it to further define centroids in the latent seed space. We show that our new interpolation and centroid evaluation techniques significantly enhance the generation of rare concept images. This further leads to state-of-the-art performance on few-shot and long-tail benchmarks, improving prior approach in terms of generation speed, image quality, and semantic content.
PDF

点此查看论文截图

VidEdit: Zero-Shot and Spatially Aware Text-Driven Video Editing

Authors:Paul Couairon, Clément Rambour, Jean-Emmanuel Haugeard, Nicolas Thome

Recently, diffusion-based generative models have achieved remarkable success for image generation and edition. However, their use for video editing still faces important limitations. This paper introduces VidEdit, a novel method for zero-shot text-based video editing ensuring strong temporal and spatial consistency. Firstly, we propose to combine atlas-based and pre-trained text-to-image diffusion models to provide a training-free and efficient editing method, which by design fulfills temporal smoothness. Secondly, we leverage off-the-shelf panoptic segmenters along with edge detectors and adapt their use for conditioned diffusion-based atlas editing. This ensures a fine spatial control on targeted regions while strictly preserving the structure of the original video. Quantitative and qualitative experiments show that VidEdit outperforms state-of-the-art methods on DAVIS dataset, regarding semantic faithfulness, image preservation, and temporal consistency metrics. With this framework, processing a single video only takes approximately one minute, and it can generate multiple compatible edits based on a unique text prompt. Project web-page at https://videdit.github.io
PDF Project web-page at https://videdit.github.io

点此查看论文截图

InfoDiffusion: Representation Learning Using Information Maximizing Diffusion Models

Authors:Yingheng Wang, Yair Schiff, Aaron Gokaslan, Weishen Pan, Fei Wang, Christopher De Sa, Volodymyr Kuleshov

While diffusion models excel at generating high-quality samples, their latent variables typically lack semantic meaning and are not suitable for representation learning. Here, we propose InfoDiffusion, an algorithm that augments diffusion models with low-dimensional latent variables that capture high-level factors of variation in the data. InfoDiffusion relies on a learning objective regularized with the mutual information between observed and hidden variables, which improves latent space quality and prevents the latents from being ignored by expressive diffusion-based decoders. Empirically, we find that InfoDiffusion learns disentangled and human-interpretable latent representations that are competitive with state-of-the-art generative and contrastive methods, while retaining the high sample quality of diffusion models. Our method enables manipulating the attributes of generated images and has the potential to assist tasks that require exploring a learned latent space to generate quality samples, e.g., generative design.
PDF ICML 2023

点此查看论文截图

OMS-DPM: Optimizing the Model Schedule for Diffusion Probabilistic Models

Authors:Enshu Liu, Xuefei Ning, Zinan Lin, Huazhong Yang, Yu Wang

Diffusion probabilistic models (DPMs) are a new class of generative models that have achieved state-of-the-art generation quality in various domains. Despite the promise, one major drawback of DPMs is the slow generation speed due to the large number of neural network evaluations required in the generation process. In this paper, we reveal an overlooked dimension — model schedule — for optimizing the trade-off between generation quality and speed. More specifically, we observe that small models, though having worse generation quality when used alone, could outperform large models in certain generation steps. Therefore, unlike the traditional way of using a single model, using different models in different generation steps in a carefully designed \emph{model schedule} could potentially improve generation quality and speed \emph{simultaneously}. We design OMS-DPM, a predictor-based search algorithm, to optimize the model schedule given an arbitrary generation time budget and a set of pre-trained models. We demonstrate that OMS-DPM can find model schedules that improve generation quality and speed than prior state-of-the-art methods across CIFAR-10, CelebA, ImageNet, and LSUN datasets. When applied to the public checkpoints of the Stable Diffusion model, we are able to accelerate the sampling by 2$\times$ while maintaining the generation quality.
PDF Accepted by ICML2023

点此查看论文截图

Linguistic Binding in Diffusion Models: Enhancing Attribute Correspondence through Attention Map Alignment

Authors:Royi Rassin, Eran Hirsch, Daniel Glickman, Shauli Ravfogel, Yoav Goldberg, Gal Chechik

Text-conditioned image generation models often generate incorrect associations between entities and their visual attributes. This reflects an impaired mapping between linguistic binding of entities and modifiers in the prompt and visual binding of the corresponding elements in the generated image. As one notable example, a query like ``a pink sunflower and a yellow flamingo’’ may incorrectly produce an image of a yellow sunflower and a pink flamingo. To remedy this issue, we propose SynGen, an approach which first syntactically analyses the prompt to identify entities and their modifiers, and then uses a novel loss function that encourages the cross-attention maps to agree with the linguistic binding reflected by the syntax. Specifically, we encourage large overlap between attention maps of entities and their modifiers, and small overlap with other entities and modifier words. The loss is optimized during inference, without retraining or fine-tuning the model. Human evaluation on three datasets, including one new and challenging set, demonstrate significant improvements of SynGen compared with current state of the art methods. This work highlights how making use of sentence structure during inference can efficiently and substantially improve the faithfulness of text-to-image generation.
PDF We make our code publicly available https://github.com/RoyiRa/Syntax-Guided-Generation

点此查看论文截图

When Hyperspectral Image Classification Meets Diffusion Models: An Unsupervised Feature Learning Framework

Authors:Jingyi Zhou, Jiamu Sheng, Jiayuan Fan, Peng Ye, Tong He, Bin Wang, Tao Chen

Learning effective spectral-spatial features is important for the hyperspectral image (HSI) classification task, but the majority of existing HSI classification methods still suffer from modeling complex spectral-spatial relations and characterizing low-level details and high-level semantics comprehensively. As a new class of record-breaking generative models, diffusion models are capable of modeling complex relations for understanding inputs well as learning both high-level and low-level visual features. Meanwhile, diffusion models can capture more abundant features by taking advantage of the extra and unique dimension of timestep t. In view of these, we propose an unsupervised spectral-spatial feature learning framework based on the diffusion model for HSI classification for the first time, named Diff-HSI. Specifically, we first pretrain the diffusion model with unlabeled HSI patches for unsupervised feature learning, and then exploit intermediate hierarchical features from different timesteps for classification. For better using the abundant timestep-wise features, we design a timestep-wise feature bank and a dynamic feature fusion module to construct timestep-wise features, adaptively learning informative multi-timestep representations. Finally, an ensemble of linear classifiers is applied to perform HSI classification. Extensive experiments are conducted on three public HSI datasets, and our results demonstrate that Diff-HSI outperforms state-of-the-art supervised and unsupervised methods for HSI classification.
PDF

点此查看论文截图

Relation-Aware Diffusion Model for Controllable Poster Layout Generation

Authors:Fengheng Li, An Liu, Wei Feng, Honghe Zhu, Yaoyu Li, Zheng Zhang, Jingjing Lv, Xin Zhu, Junjie Shen, Zhangang Lin, Jingping Shao

Poster layout is a crucial aspect of poster design. Prior methods primarily focus on the correlation between visual content and graphic elements. However, a pleasant layout should also consider the relationship between visual and textual contents and the relationship between elements. In this study, we introduce a relation-aware diffusion model for poster layout generation that incorporates these two relationships in the generation process. Firstly, we devise a visual-textual relation-aware module that aligns the visual and textual representations across modalities, thereby enhancing the layout’s efficacy in conveying textual information. Subsequently, we propose a geometry relation-aware module that learns the geometry relationship between elements by comprehensively considering contextual information. Additionally, the proposed method can generate diverse layouts based on user constraints. To advance research in this field, we have constructed a poster layout dataset named CGL-Dataset V2. Our proposed method outperforms state-of-the-art methods on CGL-Dataset V2. The data and code will be available at https://github.com/liuan0803/RADM.
PDF

点此查看论文截图

Training Diffusion Classifiers with Denoising Assistance

Authors:Chandramouli Sastry, Sri Harsha Dumpala, Sageev Oore

Score-matching and diffusion models have emerged as state-of-the-art generative models for both conditional and unconditional generation. Classifier-guided diffusion models are created by training a classifier on samples obtained from the forward-diffusion process (i.e., from data to noise). In this paper, we propose denoising-assisted (DA) classifiers wherein the diffusion classifier is trained using both noisy and denoised examples as simultaneous inputs to the model. We differentiate between denoising-assisted (DA) classifiers and noisy classifiers, which are diffusion classifiers that are only trained on noisy examples. Our experiments on Cifar10 and Imagenet show that DA-classifiers improve over noisy classifiers both quantitatively in terms of generalization to test data and qualitatively in terms of perceptually-aligned classifier-gradients and generative modeling metrics. Finally, we describe a semi-supervised framework for training diffusion classifiers and our experiments, that also include positive-unlabeled settings, demonstrate improved generalization of DA-classifiers over noisy classifiers.
PDF Shorter version of this work was accepted in the CVPR 2023 Workshop on Generative Models

点此查看论文截图

Conditional Human Sketch Synthesis with Explicit Abstraction Control

Authors:Dar-Yen Chen

This paper presents a novel free-hand sketch synthesis approach addressing explicit abstraction control in class-conditional and photo-to-sketch synthesis. Abstraction is a vital aspect of sketches, as it defines the fundamental distinction between a sketch and an image. Previous works relied on implicit control to achieve different levels of abstraction, leading to inaccurate control and synthesized sketches deviating from human sketches. To resolve this challenge, we propose two novel abstraction control mechanisms, state embeddings and the stroke token, integrated into a transformer-based latent diffusion model (LDM). These mechanisms explicitly provide the required amount of points or strokes to the model, enabling accurate point-level and stroke-level control in synthesized sketches while preserving recognizability. Outperforming state-of-the-art approaches, our method effectively generates diverse, non-rigid and human-like sketches. The proposed approach enables coherent sketch synthesis and excels in representing human habits with desired abstraction levels, highlighting the potential of sketch synthesis for real-world applications.
PDF Code is available at https://github.com/ChenDarYen/Conditional-Human-Sketch-Synthesis-with-Explicit-Abstraction-Control

点此查看论文截图

Fast Training of Diffusion Models with Masked Transformers

Authors:Hongkai Zheng, Weili Nie, Arash Vahdat, Anima Anandkumar

We propose an efficient approach to train large diffusion models with masked transformers. While masked transformers have been extensively explored for representation learning, their application to generative learning is less explored in the vision domain. Our work is the first to exploit masked training to reduce the training cost of diffusion models significantly. Specifically, we randomly mask out a high proportion (\emph{e.g.}, 50\%) of patches in diffused input images during training. For masked training, we introduce an asymmetric encoder-decoder architecture consisting of a transformer encoder that operates only on unmasked patches and a lightweight transformer decoder on full patches. To promote a long-range understanding of full patches, we add an auxiliary task of reconstructing masked patches to the denoising score matching objective that learns the score of unmasked patches. Experiments on ImageNet-256$\times$256 show that our approach achieves the same performance as the state-of-the-art Diffusion Transformer (DiT) model, using only 31\% of its original training time. Thus, our method allows for efficient training of diffusion models without sacrificing the generative performance.
PDF

点此查看论文截图

ArtFusion: Arbitrary Style Transfer using Dual Conditional Latent Diffusion Models

Authors:Dar-Yen Chen

Arbitrary Style Transfer (AST) aims to transform images by adopting the style from any selected artwork. Nonetheless, the need to accommodate diverse and subjective user preferences poses a significant challenge. While some users wish to preserve distinct content structures, others might favor a more pronounced stylization. Despite advances in feed-forward AST methods, their limited customizability hinders their practical application. We propose a new approach, ArtFusion, which provides a flexible balance between content and style. In contrast to traditional methods reliant on biased similarity losses, ArtFusion utilizes our innovative Dual Conditional Latent Diffusion Probabilistic Models (Dual-cLDM). This approach mitigates repetitive patterns and enhances subtle artistic aspects like brush strokes and genre-specific features. Despite the promising results of conditional diffusion probabilistic models (cDM) in various generative tasks, their introduction to style transfer is challenging due to the requirement for paired training data. ArtFusion successfully navigates this issue, offering more practical and controllable stylization. A key element of our approach involves using a single image for both content and style during model training, all the while maintaining effective stylization during inference. ArtFusion outperforms existing approaches on outstanding controllability and faithful presentation of artistic details, providing evidence of its superior style transfer capabilities. Furthermore, the Dual-cLDM utilized in ArtFusion carries the potential for a variety of complex multi-condition generative tasks, thus greatly broadening the impact of our research.
PDF Code is available at https://github.com/ChenDarYen/ArtFusion

点此查看论文截图

Generative Proxemics: A Prior for 3D Social Interaction from Images

Authors:Lea Müller, Vickie Ye, Georgios Pavlakos, Michael Black, Angjoo Kanazawa

Social interaction is a fundamental aspect of human behavior and communication. The way individuals position themselves in relation to others, also known as proxemics, conveys social cues and affects the dynamics of social interaction. We present a novel approach that learns a 3D proxemics prior of two people in close social interaction. Since collecting a large 3D dataset of interacting people is a challenge, we rely on 2D image collections where social interactions are abundant. We achieve this by reconstructing pseudo-ground truth 3D meshes of interacting people from images with an optimization approach using existing ground-truth contact maps. We then model the proxemics using a novel denoising diffusion model called BUDDI that learns the joint distribution of two people in close social interaction directly in the SMPL-X parameter space. Sampling from our generative proxemics model produces realistic 3D human interactions, which we validate through a user study. Additionally, we introduce a new optimization method that uses the diffusion prior to reconstruct two people in close proximity from a single image without any contact annotation. Our approach recovers more accurate and plausible 3D social interactions from noisy initial estimates and outperforms state-of-the-art methods. See our project site for code, data, and model: muelea.github.io/buddi.
PDF

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录