Vision Transformer


2023-06-15 更新

LoCoOp: Few-Shot Out-of-Distribution Detection via Prompt Learning

Authors:Atsuyuki Miyai, Qing Yu, Go Irie, Kiyoharu Aizawa

We present a novel vision-language prompt learning approach for few-shot out-of-distribution (OOD) detection. Few-shot OOD detection aims to detect OOD images from classes that are unseen during training using only a few labeled in-distribution (ID) images. While prompt learning methods such as CoOp have shown effectiveness and efficiency in few-shot ID classification, they still face limitations in OOD detection due to the potential presence of ID-irrelevant information in text embeddings. To address this issue, we introduce a new approach called Local regularized Context Optimization (LoCoOp), which performs OOD regularization that utilizes the portions of CLIP local features as OOD features during training. CLIP’s local features have a lot of ID-irrelevant nuisances (e.g., backgrounds), and by learning to push them away from the ID class text embeddings, we can remove the nuisances in the ID class text embeddings and enhance the separation between ID and OOD. Experiments on the large-scale ImageNet OOD detection benchmarks demonstrate the superiority of our LoCoOp over zero-shot, fully supervised detection methods and prompt learning methods. Notably, even in a one-shot setting — just one label per class, LoCoOp outperforms existing zero-shot and fully supervised detection methods. The code will be available via https://github.com/AtsuMiyai/LoCoOp.
PDF v2: minor modification (i.e., I removed tex commands from the arXiv abstract)

点此查看论文截图

Read, look and detect: Bounding box annotation from image-caption pairs

Authors:Eduardo Hugo Sanchez

Various methods have been proposed to detect objects while reducing the cost of data annotation. For instance, weakly supervised object detection (WSOD) methods rely only on image-level annotations during training. Unfortunately, data annotation remains expensive since annotators must provide the categories describing the content of each image and labeling is restricted to a fixed set of categories. In this paper, we propose a method to locate and label objects in an image by using a form of weaker supervision: image-caption pairs. By leveraging recent advances in vision-language (VL) models and self-supervised vision transformers (ViTs), our method is able to perform phrase grounding and object detection in a weakly supervised manner. Our experiments demonstrate the effectiveness of our approach by achieving a 47.51% recall@1 score in phrase grounding on Flickr30k Entities and establishing a new state-of-the-art in object detection by achieving 21.1 mAP 50 and 10.5 mAP 50:95 on MS COCO when exclusively relying on image-caption pairs.
PDF

点此查看论文截图

FasterViT: Fast Vision Transformers with Hierarchical Attention

Authors:Ali Hatamizadeh, Greg Heinrich, Hongxu Yin, Andrew Tao, Jose M. Alvarez, Jan Kautz, Pavlo Molchanov

We design a new family of hybrid CNN-ViT neural networks, named FasterViT, with a focus on high image throughput for computer vision (CV) applications. FasterViT combines the benefits of fast local representation learning in CNNs and global modeling properties in ViT. Our newly introduced Hierarchical Attention (HAT) approach decomposes global self-attention with quadratic complexity into a multi-level attention with reduced computational costs. We benefit from efficient window-based self-attention. Each window has access to dedicated carrier tokens that participate in local and global representation learning. At a high level, global self-attentions enable the efficient cross-window communication at lower costs. FasterViT achieves a SOTA Pareto-front in terms of accuracy \vs image throughput. We have extensively validated its effectiveness on various CV tasks including classification, object detection and segmentation. We also show that HAT can be used as a plug-and-play module for existing networks and enhance them. We further demonstrate significantly faster and more accurate performance than competitive counterparts for images with high resolution. Code is available at https://github.com/NVlabs/FasterViT.
PDF Tech report

点此查看论文截图

FLSL: Feature-level Self-supervised Learning

Authors:Qing Su, Anton Netchaev, Hai Li, Shihao Ji

Current self-supervised learning (SSL) methods (e.g., SimCLR, DINO, VICReg, MOCOv3) target primarily on representations at instance level and do not generalize well to dense prediction tasks, such as object detection and segmentation. Towards aligning SSL with dense predictions, this paper demonstrates for the first time the underlying mean-shift clustering process of Vision Transformers (ViT), which aligns well with natural image semantics (e.g., a world of objects and stuffs). By employing transformer for joint embedding and clustering, we propose a two-level feature clustering SSL method, coined Feature-Level Self-supervised Learning (FLSL). We present the formal definition of the FLSL problem and construct the objectives from the mean-shift and k-means perspectives. We show that FLSL promotes remarkable semantic cluster representations and learns an embedding scheme amenable to intra-view and inter-view feature clustering. Experiments show that FLSL yields significant improvements in dense prediction tasks, achieving 44.9 (+2.8)% AP and 46.5% AP in object detection, as well as 40.8 (+2.3)% AP and 42.1% AP in instance segmentation on MS-COCO, using Mask R-CNN with ViT-S/16 and ViT-S/8 as backbone, respectively. FLSL consistently outperforms existing SSL methods across additional benchmarks, including UAV object detection on UAVDT, and video instance segmentation on DAVIS 2017. We conclude by presenting visualization and various ablation studies to better 20 understand the success of FLSL.
PDF

点此查看论文截图

Vista-Morph: Unsupervised Image Registration of Visible-Thermal Facial Pairs

Authors:Catherine Ordun, Edward Raff, Sanjay Purushotham

For a variety of biometric cross-spectral tasks, Visible-Thermal (VT) facial pairs are used. However, due to a lack of calibration in the lab, photographic capture between two different sensors leads to severely misaligned pairs that can lead to poor results for person re-identification and generative AI. To solve this problem, we introduce our approach for VT image registration called Vista Morph. Unlike existing VT facial registration that requires manual, hand-crafted features for pixel matching and/or a supervised thermal reference, Vista Morph is completely unsupervised without the need for a reference. By learning the affine matrix through a Vision Transformer (ViT)-based Spatial Transformer Network (STN) and Generative Adversarial Networks (GAN), Vista Morph successfully aligns facial and non-facial VT images. Our approach learns warps in Hard, No, and Low-light visual settings and is robust to geometric perturbations and erasure at test time. We conduct a downstream generative AI task to show that registering training data with Vista Morph improves subject identity of generated thermal faces when performing V2T image translation.
PDF

点此查看论文截图

Self-Enhancement Improves Text-Image Retrieval in Foundation Visual-Language Models

Authors:Yuguang Yang, Yiming Wang, Shupeng Geng, Runqi Wang, Yimi Wang, Sheng Wu, Baochang Zhang

The emergence of cross-modal foundation models has introduced numerous approaches grounded in text-image retrieval. However, on some domain-specific retrieval tasks, these models fail to focus on the key attributes required. To address this issue, we propose a self-enhancement framework, A^{3}R, based on the CLIP-ViT/G-14, one of the largest cross-modal models. First, we perform an Attribute Augmentation strategy to enrich the textual description for fine-grained representation before model learning. Then, we propose an Adaption Re-ranking method to unify the representation space of textual query and candidate images and re-rank candidate images relying on the adapted query after model learning. The proposed framework is validated to achieve a salient improvement over the baseline and other teams’ solutions in the cross-modal image retrieval track of the 1st foundation model challenge without introducing any additional samples. The code is available at \url{https://github.com/CapricornGuang/A3R}.
PDF Accepted by CVPR 2023 Workshop

点此查看论文截图

Revisiting Token Pruning for Object Detection and Instance Segmentation

Authors:Yifei Liu, Mathias Gehrig, Nico Messikommer, Marco Cannici, Davide Scaramuzza

Vision Transformers (ViTs) have shown impressive performance in computer vision, but their high computational cost, quadratic in the number of tokens, limits their adoption in computation-constrained applications. However, this large number of tokens may not be necessary, as not all tokens are equally important. In this paper, we investigate token pruning to accelerate inference for object detection and instance segmentation, extending prior works from image classification. Through extensive experiments, we offer four insights for dense tasks: (i) tokens should not be completely pruned and discarded, but rather preserved in the feature maps for later use. (ii) reactivating previously pruned tokens can further enhance model performance. (iii) a dynamic pruning rate based on images is better than a fixed pruning rate. (iv) a lightweight, 2-layer MLP can effectively prune tokens, achieving accuracy comparable with complex gating networks with a simpler design. We evaluate the impact of these design choices on COCO dataset and present a method integrating these insights that outperforms prior art token pruning models, significantly reducing performance drop from ~1.5 mAP to ~0.3 mAP for both boxes and masks. Compared to the dense counterpart that uses all tokens, our method achieves up to 34% faster inference speed for the whole network and 46% for the backbone.
PDF

点此查看论文截图

I See Dead People: Gray-Box Adversarial Attack on Image-To-Text Models

Authors:Raz Lapid, Moshe Sipper

Modern image-to-text systems typically adopt the encoder-decoder framework, which comprises two main components: an image encoder, responsible for extracting image features, and a transformer-based decoder, used for generating captions. Taking inspiration from the analysis of neural networks’ robustness against adversarial perturbations, we propose a novel gray-box algorithm for creating adversarial examples in image-to-text models. Unlike image classification tasks that have a finite set of class labels, finding visually similar adversarial examples in an image-to-text task poses greater challenges because the captioning system allows for a virtually infinite space of possible captions. In this paper, we present a gray-box adversarial attack on image-to-text, both untargeted and targeted. We formulate the process of discovering adversarial perturbations as an optimization problem that uses only the image-encoder component, meaning the proposed attack is language-model agnostic. Through experiments conducted on the ViT-GPT2 model, which is the most-used image-to-text model in Hugging Face, and the Flickr30k dataset, we demonstrate that our proposed attack successfully generates visually similar adversarial examples, both with untargeted and targeted captions. Notably, our attack operates in a gray-box manner, requiring no knowledge about the decoder module. We also show that our attacks fool the popular open-source platform Hugging Face.
PDF

点此查看论文截图

Learning to Estimate 6DoF Pose from Limited Data: A Few-Shot, Generalizable Approach using RGB Images

Authors:Panwang Pan, Zhiwen Fan, Brandon Y. Feng, Peihao Wang, Chenxin Li, Zhangyang Wang

The accurate estimation of six degrees-of-freedom (6DoF) object poses is essential for many applications in robotics and augmented reality. However, existing methods for 6DoF pose estimation often depend on CAD templates or dense support views, restricting their usefulness in realworld situations. In this study, we present a new cascade framework named Cas6D for few-shot 6DoF pose estimation that is generalizable and uses only RGB images. To address the false positives of target object detection in the extreme few-shot setting, our framework utilizes a selfsupervised pre-trained ViT to learn robust feature representations. Then, we initialize the nearest top-K pose candidates based on similarity score and refine the initial poses using feature pyramids to formulate and update the cascade warped feature volume, which encodes context at increasingly finer scales. By discretizing the pose search range using multiple pose bins and progressively narrowing the pose search range in each stage using predictions from the previous stage, Cas6D can overcome the large gap between pose candidates and ground truth poses, which is a common failure mode in sparse-view scenarios. Experimental results on the LINEMOD and GenMOP datasets demonstrate that Cas6D outperforms state-of-the-art methods by 9.2% and 3.8% accuracy (Proj-5) under the 32-shot setting compared to OnePose++ and Gen6D.
PDF

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录