场景文本检测识别


2023-06-14 更新

PSSTRNet: Progressive Segmentation-guided Scene Text Removal Network

Authors:Guangtao Lyu, Anna Zhu

Scene text removal (STR) is a challenging task due to the complex text fonts, colors, sizes, and background textures in scene images. However, most previous methods learn both text location and background inpainting implicitly within a single network, which weakens the text localization mechanism and makes a lossy background. To tackle these problems, we propose a simple Progressive Segmentation-guided Scene Text Removal Network(PSSTRNet) to remove the text in the image iteratively. It contains two decoder branches, a text segmentation branch, and a text removal branch, with a shared encoder. The text segmentation branch generates text mask maps as the guidance for the regional removal branch. In each iteration, the original image, previous text removal result, and text mask are input to the network to extract the rest part of the text segments and cleaner text removal result. To get a more accurate text mask map, an update module is developed to merge the mask map in the current and previous stages. The final text removal result is obtained by adaptive fusion of results from all previous stages. A sufficient number of experiments and ablation studies conducted on the real and synthetic public datasets demonstrate our proposed method achieves state-of-the-art performance. The source code of our work is available at: \href{https://github.com/GuangtaoLyu/PSSTRNet}{https://github.com/GuangtaoLyu/PSSTRNet.}
PDF Accepted by ICME2022

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录