Vision Transformer


2023-06-09 更新

GPT4Image: Can Large Pre-trained Models Help Vision Models on Perception Tasks?

Authors:Ning Ding, Yehui Tang, Zhongqian Fu, Chao Xu, Kai Han, Yunhe Wang

The recent upsurge in pre-trained large models (e.g. GPT-4) has swept across the entire deep learning community. Such powerful large language models (LLMs) demonstrate advanced generative ability and multimodal understanding capability, which quickly achieve new state-of-the-art performances on a variety of benchmarks. The pre-trained LLM usually plays the role as a universal AI model that can conduct various tasks, including context reasoning, article analysis and image content comprehension. However, considering the prohibitively high memory and computational cost for implementing such a large model, the conventional models (such as CNN and ViT), are still essential for many visual perception tasks. In this paper, we propose to enhance the representation ability of ordinary vision models for perception tasks (e.g. image classification) by taking advantage of large pre-trained models. We present a new learning paradigm in which the knowledge extracted from large pre-trained models are utilized to help models like CNN and ViT learn enhanced representations and achieve better performance. Firstly, we curate a high quality description set by prompting a multimodal LLM to generate descriptive text for all training images. Furthermore, we feed these detailed descriptions into a pre-trained encoder to extract text embeddings with rich semantic information that encodes the content of images. During training, text embeddings will serve as extra supervising signals and be aligned with image representations learned by vision models. The alignment process helps vision models learn better and achieve higher accuracy with the assistance of pre-trained LLMs. We conduct extensive experiments to verify that the proposed algorithm consistently improves the performance for various vision models with heterogeneous architectures.
PDF GitHub: https://github.com/huawei-noah/Efficient-Computing/tree/master/GPT4Image/

点此查看论文截图

LoCoOp: Few-Shot Out-of-Distribution Detection via Prompt Learning

Authors:Atsuyuki Miyai, Qing Yu, Go Irie, Kiyoharu Aizawa

We present a novel vision-language prompt learning approach for few-shot out-of-distribution (OOD) detection. Few-shot OOD detection aims to detect OOD images from classes that are unseen during training using only a few labeled in-distribution (ID) images. While prompt learning methods such as CoOp have shown effectiveness and efficiency in few-shot ID classification, they still face limitations in OOD detection due to the potential presence of ID-irrelevant information in text embeddings. To address this issue, we introduce a new approach called \textbf{Lo}cal regularized \textbf{Co}ntext \textbf{Op}timization (LoCoOp), which performs OOD regularization that utilizes the portions of CLIP local features as OOD features during training. CLIP’s local features have a lot of ID-irrelevant nuisances (e.g., backgrounds), and by learning to push them away from the ID class text embeddings, we can remove the nuisances in the ID class text embeddings and enhance the separation between ID and OOD. Experiments on the large-scale ImageNet OOD detection benchmarks demonstrate the superiority of our LoCoOp over zero-shot, fully supervised detection methods and prompt learning methods. Notably, even in a one-shot setting — just one label per class, LoCoOp outperforms existing zero-shot and fully supervised detection methods. The code will be available via \url{https://github.com/AtsuMiyai/LoCoOp}.
PDF

点此查看论文截图

A Novel Vision Transformer with Residual in Self-attention for Biomedical Image Classification

Authors:Arun K. Sharma, Nishchal K. Verma

Biomedical image classification requires capturing of bio-informatics based on specific feature distribution. In most of such applications, there are mainly challenges due to limited availability of samples for diseased cases and imbalanced nature of dataset. This article presents the novel framework of multi-head self-attention for vision transformer (ViT) which makes capable of capturing the specific image features for classification and analysis. The proposed method uses the concept of residual connection for accumulating the best attention output in each block of multi-head attention. The proposed framework has been evaluated on two small datasets: (i) blood cell classification dataset and (ii) brain tumor detection using brain MRI images. The results show the significant improvement over traditional ViT and other convolution based state-of-the-art classification models.
PDF

点此查看论文截图

Enhancing CLIP with CLIP: Exploring Pseudolabeling for Limited-Label Prompt Tuning

Authors:Cristina Menghini, Andrew Delworth, Stephen H. Bach

Fine-tuning vision-language models (VLMs) like CLIP to downstream tasks is often necessary to optimize their performance. However, a major obstacle is the limited availability of labeled data. We study the use of pseudolabels, i.e., heuristic labels for unlabeled data, to enhance CLIP via prompt tuning. Conventional pseudolabeling trains a model on labeled data and then generates labels for unlabeled data. VLMs’ zero-shot capabilities enable a ``second generation’’ of pseudolabeling approaches that do not require task-specific training on labeled data. By using zero-shot pseudolabels as a source of supervision, we observe that learning paradigms such as semi-supervised, transductive zero-shot, and unsupervised learning can all be seen as optimizing the same loss function. This unified view enables the development of versatile training strategies that are applicable across learning paradigms. We investigate them on image classification tasks where CLIP exhibits limitations, by varying prompt modalities, e.g., textual or visual prompts, and learning paradigms. We find that (1) unexplored prompt tuning strategies that iteratively refine pseudolabels consistently improve CLIP accuracy, by 19.5 points in semi-supervised learning, by 28.4 points in transductive zero-shot learning, and by 15.2 points in unsupervised learning, and (2) unlike conventional semi-supervised pseudolabeling, which exacerbates model biases toward classes with higher-quality pseudolabels, prompt tuning leads to a more equitable distribution of per-class accuracy. The code to reproduce the experiments is at github.com/BatsResearch/menghini-enhanceCLIPwithCLIP-code.
PDF

点此查看论文截图

Efficient Vision Transformer for Human Pose Estimation via Patch Selection

Authors:Kaleab A. Kinfu, René Vidal

While Convolutional Neural Networks (CNNs) have been widely successful in 2D human pose estimation, Vision Transformers (ViTs) have emerged as a promising alternative to CNNs, boosting state-of-the-art performance. However, the quadratic computational complexity of ViTs has limited their applicability for processing high-resolution images and long videos. To address this challenge, we propose a simple method for reducing ViT’s computational complexity based on selecting and processing a small number of most informative patches while disregarding others. We leverage a lightweight pose estimation network to guide the patch selection process, ensuring that the selected patches contain the most important information. Our experimental results on three widely used 2D pose estimation benchmarks, namely COCO, MPII and OCHuman, demonstrate the effectiveness of our proposed methods in significantly improving speed and reducing computational complexity with a slight drop in performance.
PDF

点此查看论文截图

Improving Visual Prompt Tuning for Self-supervised Vision Transformers

Authors:Seungryong Yoo, Eunji Kim, Dahuin Jung, Jungbeom Lee, Sungroh Yoon

Visual Prompt Tuning (VPT) is an effective tuning method for adapting pretrained Vision Transformers (ViTs) to downstream tasks. It leverages extra learnable tokens, known as prompts, which steer the frozen pretrained ViTs. Although VPT has demonstrated its applicability with supervised vision transformers, it often underperforms with self-supervised ones. Through empirical observations, we deduce that the effectiveness of VPT hinges largely on the ViT blocks with which the prompt tokens interact. Specifically, VPT shows improved performance on image classification tasks for MAE and MoCo v3 when the prompt tokens are inserted into later blocks rather than the first block. These observations suggest that there exists an optimal location of blocks for the insertion of prompt tokens. Unfortunately, identifying the optimal blocks for prompts within each self-supervised ViT for diverse future scenarios is a costly process. To mitigate this problem, we propose a simple yet effective method that learns a gate for each ViT block to adjust its intervention into the prompt tokens. With our method, prompt tokens are selectively influenced by blocks that require steering for task adaptation. Our method outperforms VPT variants in FGVC and VTAB image classification and ADE20K semantic segmentation. The code is available at https://github.com/ryongithub/GatedPromptTuning.
PDF International Conference on Machine Learning (ICML) 2023

点此查看论文截图

Background Prompting for Improved Object Depth

Authors:Manel Baradad, Yuanzhen Li, Forrester Cole, Michael Rubinstein, Antonio Torralba, William T. Freeman, Varun Jampani

Estimating the depth of objects from a single image is a valuable task for many vision, robotics, and graphics applications. However, current methods often fail to produce accurate depth for objects in diverse scenes. In this work, we propose a simple yet effective Background Prompting strategy that adapts the input object image with a learned background. We learn the background prompts only using small-scale synthetic object datasets. To infer object depth on a real image, we place the segmented object into the learned background prompt and run off-the-shelf depth networks. Background Prompting helps the depth networks focus on the foreground object, as they are made invariant to background variations. Moreover, Background Prompting minimizes the domain gap between synthetic and real object images, leading to better sim2real generalization than simple finetuning. Results on multiple synthetic and real datasets demonstrate consistent improvements in real object depths for a variety of existing depth networks. Code and optimized background prompts can be found at: https://mbaradad.github.io/depth_prompt.
PDF

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录