2023-06-09 更新
MarineVRS: Marine Video Retrieval System with Explainability via Semantic Understanding
Authors:Tan-Sang Ha, Hai Nguyen-Truong, Tuan-Anh Vu, Sai-Kit Yeung
Building a video retrieval system that is robust and reliable, especially for the marine environment, is a challenging task due to several factors such as dealing with massive amounts of dense and repetitive data, occlusion, blurriness, low lighting conditions, and abstract queries. To address these challenges, we present MarineVRS, a novel and flexible video retrieval system designed explicitly for the marine domain. MarineVRS integrates state-of-the-art methods for visual and linguistic object representation to enable efficient and accurate search and analysis of vast volumes of underwater video data. In addition, unlike the conventional video retrieval system, which only permits users to index a collection of images or videos and search using a free-form natural language sentence, our retrieval system includes an additional Explainability module that outputs the segmentation masks of the objects that the input query referred to. This feature allows users to identify and isolate specific objects in the video footage, leading to more detailed analysis and understanding of their behavior and movements. Finally, with its adaptability, explainability, accuracy, and scalability, MarineVRS is a powerful tool for marine researchers and scientists to efficiently and accurately process vast amounts of data and gain deeper insights into the behavior and movements of marine species.
PDF Accepted to OCEANS 2023 Limerick. Website: https://marinevrs.hkustvgd.com/
点此查看论文截图
Video-ChatGPT: Towards Detailed Video Understanding via Large Vision and Language Models
Authors:Muhammad Maaz, Hanoona Rasheed, Salman Khan, Fahad Shahbaz Khan
Conversation agents fueled by Large Language Models (LLMs) are providing a new way to interact with visual data. While there have been initial attempts for image-based conversation models, this work addresses the underexplored field of video-based conversation by introducing Video-ChatGPT. It is a multimodal model that merges a video-adapted visual encoder with a LLM. The model is capable of understanding and generating human-like conversations about videos. We introduce a new dataset of 100,000 video-instruction pairs used to train Video-ChatGPT acquired via manual and semi-automated pipeline that is easily scalable and robust to label noise. We also develop a quantiative evaluation framework for video-based dialogue models to objectively analyse the strengths and weaknesses of proposed models. Our code, models, instruction-sets and demo are released at https://github.com/mbzuai-oryx/Video-ChatGPT.
PDF