2023-06-09 更新
LoCoOp: Few-Shot Out-of-Distribution Detection via Prompt Learning
Authors:Atsuyuki Miyai, Qing Yu, Go Irie, Kiyoharu Aizawa
We present a novel vision-language prompt learning approach for few-shot out-of-distribution (OOD) detection. Few-shot OOD detection aims to detect OOD images from classes that are unseen during training using only a few labeled in-distribution (ID) images. While prompt learning methods such as CoOp have shown effectiveness and efficiency in few-shot ID classification, they still face limitations in OOD detection due to the potential presence of ID-irrelevant information in text embeddings. To address this issue, we introduce a new approach called \textbf{Lo}cal regularized \textbf{Co}ntext \textbf{Op}timization (LoCoOp), which performs OOD regularization that utilizes the portions of CLIP local features as OOD features during training. CLIP’s local features have a lot of ID-irrelevant nuisances (e.g., backgrounds), and by learning to push them away from the ID class text embeddings, we can remove the nuisances in the ID class text embeddings and enhance the separation between ID and OOD. Experiments on the large-scale ImageNet OOD detection benchmarks demonstrate the superiority of our LoCoOp over zero-shot, fully supervised detection methods and prompt learning methods. Notably, even in a one-shot setting — just one label per class, LoCoOp outperforms existing zero-shot and fully supervised detection methods. The code will be available via \url{https://github.com/AtsuMiyai/LoCoOp}.
PDF
点此查看论文截图
Few-shot Class-incremental Audio Classification Using Stochastic Classifier
Authors:Yanxiong Li, Wenchang Cao, Jialong Li, Wei Xie, Qianhua He
It is generally assumed that number of classes is fixed in current audio classification methods, and the model can recognize pregiven classes only. When new classes emerge, the model needs to be retrained with adequate samples of all classes. If new classes continually emerge, these methods will not work well and even infeasible. In this study, we propose a method for fewshot class-incremental audio classification, which continually recognizes new classes and remember old ones. The proposed model consists of an embedding extractor and a stochastic classifier. The former is trained in base session and frozen in incremental sessions, while the latter is incrementally expanded in all sessions. Two datasets (NS-100 and LS-100) are built by choosing samples from audio corpora of NSynth and LibriSpeech, respectively. Results show that our method exceeds four baseline ones in average accuracy and performance dropping rate. Code is at https://github.com/vinceasvp/meta-sc.
PDF 5 pages, 3 figures, 4 tables. Accepted for publication in INTERSPEECH 2023
点此查看论文截图
TART: Improved Few-shot Text Classification Using Task-Adaptive Reference Transformation
Authors:Shuo Lei, Xuchao Zhang, Jianfeng He, Fanglan Chen, Chang-Tien Lu
Meta-learning has emerged as a trending technique to tackle few-shot text classification and achieve state-of-the-art performance. However, the performance of existing approaches heavily depends on the inter-class variance of the support set. As a result, it can perform well on tasks when the semantics of sampled classes are distinct while failing to differentiate classes with similar semantics. In this paper, we propose a novel Task-Adaptive Reference Transformation (TART) network, aiming to enhance the generalization by transforming the class prototypes to per-class fixed reference points in task-adaptive metric spaces. To further maximize divergence between transformed prototypes in task-adaptive metric spaces, TART introduces a discriminative reference regularization among transformed prototypes. Extensive experiments are conducted on four benchmark datasets and our method demonstrates clear superiority over the state-of-the-art models in all the datasets. In particular, our model surpasses the state-of-the-art method by 7.4% and 5.4% in 1-shot and 5-shot classification on the 20 Newsgroups dataset, respectively.
PDF 11 pages, 5 figures. Accepted by ACL 2023
点此查看论文截图
Prompt to be Consistent is Better than Self-Consistent? Few-Shot and Zero-Shot Fact Verification with Pre-trained Language Models
Authors:Fengzhu Zeng, Wei Gao
Few-shot or zero-shot fact verification only relies on a few or no labeled training examples. In this paper, we propose a novel method called ProToCo, to \underline{Pro}mpt pre-trained language models (PLMs) \underline{To} be \underline{Co}nsistent, for improving the factuality assessment capability of PLMs in the few-shot and zero-shot settings. Given a claim-evidence pair, ProToCo generates multiple variants of the claim with different relations and frames a simple consistency mechanism as constraints for making compatible predictions across these variants. We update PLMs by using parameter-efficient fine-tuning (PEFT), leading to more accurate predictions in few-shot and zero-shot fact verification tasks. Our experiments on three public verification datasets show that ProToCo significantly outperforms state-of-the-art few-shot fact verification baselines. With a small number of unlabeled instances, ProToCo also outperforms the strong zero-shot learner T0 on zero-shot verification. Compared to large PLMs using in-context learning (ICL) method, ProToCo outperforms OPT-30B and the Self-Consistency-enabled OPT-6.7B model in both few- and zero-shot settings.
PDF Accepted as ACL 2023 Findings
点此查看论文截图
“A Little is Enough”: Few-Shot Quality Estimation based Corpus Filtering improves Machine Translation
Authors:Akshay Batheja, Pushpak Bhattacharyya
Quality Estimation (QE) is the task of evaluating the quality of a translation when reference translation is not available. The goal of QE aligns with the task of corpus filtering, where we assign the quality score to the sentence pairs present in the pseudo-parallel corpus. We propose a Quality Estimation based Filtering approach to extract high-quality parallel data from the pseudo-parallel corpus. To the best of our knowledge, this is a novel adaptation of the QE framework to extract quality parallel corpus from the pseudo-parallel corpus. By training with this filtered corpus, we observe an improvement in the Machine Translation (MT) system’s performance by up to 1.8 BLEU points, for English-Marathi, Chinese-English, and Hindi-Bengali language pairs, over the baseline model. The baseline model is the one that is trained on the whole pseudo-parallel corpus. Our Few-shot QE model transfer learned from the English-Marathi QE model and fine-tuned on only 500 Hindi-Bengali training instances, shows an improvement of up to 0.6 BLEU points for Hindi-Bengali language pair, compared to the baseline model. This demonstrates the promise of transfer learning in the setting under discussion. QE systems typically require in the order of (7K-25K) of training data. Our Hindi-Bengali QE is trained on only 500 instances of training that is 1/40th of the normal requirement and achieves comparable performance. All the scripts and datasets utilized in this study will be publicly available.
PDF
点此查看论文截图
Prompt Space Optimizing Few-shot Reasoning Success with Large Language Models
Authors:Fobo Shi, Peijun Qing, Dong Yang, Nan Wang, Youbo Lei, Haonan Lu, Xiaodong Lin
Prompt engineering is an essential technique for enhancing the abilities of large language models (LLMs) by providing explicit and specific instructions. It enables LLMs to excel in various tasks, such as arithmetic reasoning, question answering, summarization, relation extraction, machine translation, and sentiment analysis. Researchers have been actively exploring different prompt engineering strategies, such as Chain of Thought (CoT), Zero-CoT, and In-context learning. However, an unresolved problem arises from the fact that current approaches lack a solid theoretical foundation for determining optimal prompts. To address this issue in prompt engineering, we propose a new and effective approach called Prompt Space. Our methodology utilizes text embeddings to obtain basis vectors by matrix decomposition, and then constructs a space for representing all prompts. Prompt Space significantly outperforms state-of-the-art prompt paradigms on ten public reasoning benchmarks. Notably, without the help of the CoT method and the prompt “Let’s think step by step”, Prompt Space shows superior performance over the few-shot method. Overall, our approach provides a robust and fundamental theoretical framework for selecting simple and effective prompts. This advancement marks a significant step towards improving prompt engineering for a wide variety of applications in LLMs.
PDF Natural language processing (NLP)
点此查看论文截图
TKDP: Threefold Knowledge-enriched Deep Prompt Tuning for Few-shot Named Entity Recognition
Authors:Jiang Liu, Hao Fei, Fei Li, Jingye Li, Bobo Li, Liang Zhao, Chong Teng, Donghong Ji
Few-shot named entity recognition (NER) exploits limited annotated instances to identify named mentions. Effectively transferring the internal or external resources thus becomes the key to few-shot NER. While the existing prompt tuning methods have shown remarkable few-shot performances, they still fail to make full use of knowledge. In this work, we investigate the integration of rich knowledge to prompt tuning for stronger few-shot NER. We propose incorporating the deep prompt tuning framework with threefold knowledge (namely TKDP), including the internal 1) context knowledge and the external 2) label knowledge & 3) sememe knowledge. TKDP encodes the three feature sources and incorporates them into the soft prompt embeddings, which are further injected into an existing pre-trained language model to facilitate predictions. On five benchmark datasets, our knowledge-enriched model boosts by at most 11.53% F1 over the raw deep prompt method, and significantly outperforms 8 strong-performing baseline systems in 5-/10-/20-shot settings, showing great potential in few-shot NER. Our TKDP can be broadly adapted to other few-shot tasks without effort.
PDF under review
点此查看论文截图
Gotta: Generative Few-shot Question Answering by Prompt-based Cloze Data Augmentation
Authors:Xiusi Chen, Yu Zhang, Jinliang Deng, Jyun-Yu Jiang, Wei Wang
Few-shot question answering (QA) aims at precisely discovering answers to a set of questions from context passages while only a few training samples are available. Although existing studies have made some progress and can usually achieve proper results, they suffer from understanding deep semantics for reasoning out the questions. In this paper, we develop Gotta, a Generative prOmpT-based daTa Augmentation framework to mitigate the challenge above. Inspired by the human reasoning process, we propose to integrate the cloze task to enhance few-shot QA learning. Following the recent success of prompt-tuning, we present the cloze task in the same format as the main QA task, allowing the model to learn both tasks seamlessly together to fully take advantage of the power of prompt-tuning. Extensive experiments on widely used benchmarks demonstrate that Gotta consistently outperforms competitive baselines, validating the effectiveness of our proposed prompt-tuning-based cloze task, which not only fine-tunes language models but also learns to guide reasoning in QA tasks. Further analysis shows that the prompt-based loss incorporates the auxiliary task better than the multi-task loss, highlighting the strength of prompt-tuning on the few-shot QA task.
PDF
点此查看论文截图
SF-FSDA: Source-Free Few-Shot Domain Adaptive Object Detection with Efficient Labeled Data Factory
Authors:Han Sun, Rui Gong, Konrad Schindler, Luc Van Gool
Domain adaptive object detection aims to leverage the knowledge learned from a labeled source domain to improve the performance on an unlabeled target domain. Prior works typically require the access to the source domain data for adaptation, and the availability of sufficient data on the target domain. However, these assumptions may not hold due to data privacy and rare data collection. In this paper, we propose and investigate a more practical and challenging domain adaptive object detection problem under both source-free and few-shot conditions, named as SF-FSDA. To overcome this problem, we develop an efficient labeled data factory based approach. Without accessing the source domain, the data factory renders i) infinite amount of synthesized target-domain like images, under the guidance of the few-shot image samples and text description from the target domain; ii) corresponding bounding box and category annotations, only demanding minimum human effort, i.e., a few manually labeled examples. On the one hand, the synthesized images mitigate the knowledge insufficiency brought by the few-shot condition. On the other hand, compared to the popular pseudo-label technique, the generated annotations from data factory not only get rid of the reliance on the source pretrained object detection model, but also alleviate the unavoidably pseudo-label noise due to domain shift and source-free condition. The generated dataset is further utilized to adapt the source pretrained object detection model, realizing the robust object detection under SF-FSDA. The experiments on different settings showcase that our proposed approach outperforms other state-of-the-art methods on SF-FSDA problem. Our codes and models will be made publicly available.
PDF
点此查看论文截图
Meta-Learning in Spiking Neural Networks with Reward-Modulated STDP
Authors:Arsham Gholamzadeh Khoee, Alireza Javaheri, Saeed Reza Kheradpisheh, Mohammad Ganjtabesh
The human brain constantly learns and rapidly adapts to new situations by integrating acquired knowledge and experiences into memory. Developing this capability in machine learning models is considered an important goal of AI research since deep neural networks perform poorly when there is limited data or when they need to adapt quickly to new unseen tasks. Meta-learning models are proposed to facilitate quick learning in low-data regimes by employing absorbed information from the past. Although some models have recently been introduced that reached high-performance levels, they are not biologically plausible. We have proposed a bio-plausible meta-learning model inspired by the hippocampus and the prefrontal cortex using spiking neural networks with a reward-based learning system. Our proposed model includes a memory designed to prevent catastrophic forgetting, a phenomenon that occurs when meta-learning models forget what they have learned as soon as the new task begins. Also, our new model can easily be applied to spike-based neuromorphic devices and enables fast learning in neuromorphic hardware. The final analysis will discuss the implications and predictions of the model for solving few-shot classification tasks. In solving these tasks, our model has demonstrated the ability to compete with the existing state-of-the-art meta-learning techniques.
PDF
点此查看论文截图
Language Models Get a Gender Makeover: Mitigating Gender Bias with Few-Shot Data Interventions
Authors:Himanshu Thakur, Atishay Jain, Praneetha Vaddamanu, Paul Pu Liang, Louis-Philippe Morency
Societal biases present in pre-trained large language models are a critical issue as these models have been shown to propagate biases in countless downstream applications, rendering them unfair towards specific groups of people. Since large-scale retraining of these models from scratch is both time and compute-expensive, a variety of approaches have been previously proposed that de-bias a pre-trained model. While the majority of current state-of-the-art debiasing methods focus on changes to the training regime, in this paper, we propose data intervention strategies as a powerful yet simple technique to reduce gender bias in pre-trained models. Specifically, we empirically show that by fine-tuning a pre-trained model on only 10 de-biased (intervened) training examples, the tendency to favor any gender is significantly reduced. Since our proposed method only needs a few training examples, our few-shot debiasing approach is highly feasible and practical. Through extensive experimentation, we show that our debiasing technique performs better than competitive state-of-the-art baselines with minimal loss in language modeling ability.
PDF Accepted to ACL 2023 Main Conference
点此查看论文截图
Unsupervised augmentation optimization for few-shot medical image segmentation
Authors:Quan Quan, Shang Zhao, Qingsong Yao, Heqin Zhu, S. Kevin Zhou
The augmentation parameters matter to few-shot semantic segmentation since they directly affect the training outcome by feeding the networks with varying perturbated samples. However, searching optimal augmentation parameters for few-shot segmentation models without annotations is a challenge that current methods fail to address. In this paper, we first propose a framework to determine the ``optimal’’ parameters without human annotations by solving a distribution-matching problem between the intra-instance and intra-class similarity distribution, with the intra-instance similarity describing the similarity between the original sample of a particular anatomy and its augmented ones and the intra-class similarity representing the similarity between the selected sample and the others in the same class. Extensive experiments demonstrate the superiority of our optimized augmentation in boosting few-shot segmentation models. We greatly improve the top competing method by 1.27\% and 1.11\% on Abd-MRI and Abd-CT datasets, respectively, and even achieve a significant improvement for SSL-ALP on the left kidney by 3.39\% on the Abd-CT dataset.
PDF
点此查看论文截图
Revisit Few-shot Intent Classification with PLMs: Direct Fine-tuning vs. Continual Pre-training
Authors:Haode Zhang, Haowen Liang, Liming Zhan, Xiao-Ming Wu, Albert Y. S. Lam
We consider the task of few-shot intent detection, which involves training a deep learning model to classify utterances based on their underlying intents using only a small amount of labeled data. The current approach to address this problem is through continual pre-training, i.e., fine-tuning pre-trained language models (PLMs) on external resources (e.g., conversational corpora, public intent detection datasets, or natural language understanding datasets) before using them as utterance encoders for training an intent classifier. In this paper, we show that continual pre-training may not be essential, since the overfitting problem of PLMs on this task may not be as serious as expected. Specifically, we find that directly fine-tuning PLMs on only a handful of labeled examples already yields decent results compared to methods that employ continual pre-training, and the performance gap diminishes rapidly as the number of labeled data increases. To maximize the utilization of the limited available data, we propose a context augmentation method and leverage sequential self-distillation to boost performance. Comprehensive experiments on real-world benchmarks show that given only two or more labeled samples per class, direct fine-tuning outperforms many strong baselines that utilize external data sources for continual pre-training. The code can be found at https://github.com/hdzhang-code/DFTPlus.
PDF ACL 2023, Findings
点此查看论文截图
The ADAIO System at the BEA-2023 Shared Task on Generating AI Teacher Responses in Educational Dialogues
Authors:Adaeze Adigwe, Zheng Yuan
This paper presents the ADAIO team’s system entry in the Building Educational Applications (BEA) 2023 Shared Task on Generating AI Teacher Responses in Educational Dialogues. The task aims to assess the performance of state-of-the-art generative models as AI teachers in producing suitable responses within a student-teacher dialogue. Our system comprises evaluating various baseline models using OpenAI GPT-3 and designing diverse prompts to prompt the OpenAI models for teacher response generation. After the challenge, our system achieved second place by employing a few-shot prompt-based approach with the OpenAI text-davinci-003 model. The results highlight the few-shot learning capabilities of large-language models, particularly OpenAI’s GPT-3, in the role of AI teachers.
PDF Accepted in the BEA workshop at ACL 2023
点此查看论文截图
LU-NeRF: Scene and Pose Estimation by Synchronizing Local Unposed NeRFs
Authors:Zezhou Cheng, Carlos Esteves, Varun Jampani, Abhishek Kar, Subhransu Maji, Ameesh Makadia
A critical obstacle preventing NeRF models from being deployed broadly in the wild is their reliance on accurate camera poses. Consequently, there is growing interest in extending NeRF models to jointly optimize camera poses and scene representation, which offers an alternative to off-the-shelf SfM pipelines which have well-understood failure modes. Existing approaches for unposed NeRF operate under limited assumptions, such as a prior pose distribution or coarse pose initialization, making them less effective in a general setting. In this work, we propose a novel approach, LU-NeRF, that jointly estimates camera poses and neural radiance fields with relaxed assumptions on pose configuration. Our approach operates in a local-to-global manner, where we first optimize over local subsets of the data, dubbed mini-scenes. LU-NeRF estimates local pose and geometry for this challenging few-shot task. The mini-scene poses are brought into a global reference frame through a robust pose synchronization step, where a final global optimization of pose and scene can be performed. We show our LU-NeRF pipeline outperforms prior attempts at unposed NeRF without making restrictive assumptions on the pose prior. This allows us to operate in the general SE(3) pose setting, unlike the baselines. Our results also indicate our model can be complementary to feature-based SfM pipelines as it compares favorably to COLMAP on low-texture and low-resolution images.
PDF Project website: https://people.cs.umass.edu/~zezhoucheng/lu-nerf/