Diffusion Models


2023-06-09 更新

DreamSparse: Escaping from Plato’s Cave with 2D Diffusion Model Given Sparse Views

Authors:Paul Yoo, Jiaxian Guo, Yutaka Matsuo, Shixiang Shane Gu

Synthesizing novel view images from a few views is a challenging but practical problem. Existing methods often struggle with producing high-quality results or necessitate per-object optimization in such few-view settings due to the insufficient information provided. In this work, we explore leveraging the strong 2D priors in pre-trained diffusion models for synthesizing novel view images. 2D diffusion models, nevertheless, lack 3D awareness, leading to distorted image synthesis and compromising the identity. To address these problems, we propose DreamSparse, a framework that enables the frozen pre-trained diffusion model to generate geometry and identity-consistent novel view image. Specifically, DreamSparse incorporates a geometry module designed to capture 3D features from sparse views as a 3D prior. Subsequently, a spatial guidance model is introduced to convert these 3D feature maps into spatial information for the generative process. This information is then used to guide the pre-trained diffusion model, enabling it to generate geometrically consistent images without tuning it. Leveraging the strong image priors in the pre-trained diffusion models, DreamSparse is capable of synthesizing high-quality novel views for both object and scene-level images and generalising to open-set images. Experimental results demonstrate that our framework can effectively synthesize novel view images from sparse views and outperforms baselines in both trained and open-set category images. More results can be found on our project page: https://sites.google.com/view/dreamsparse-webpage.
PDF Some Mistakes

点此查看论文截图

Change Diffusion: Change Detection Map Generation Based on Difference-Feature Guided DDPM

Authors:Yihan Wen, Jialu Sui, Xianping Ma, Wendi Liang, Xiaokang Zhang, Man-On Pun

Deep learning (DL) approaches based on CNN-purely or Transformer networks have demonstrated promising results in bitemporal change detection (CD). However, their performance is limited by insufficient contextual information aggregation, as they struggle to fully capture the implicit contextual dependency relationships among feature maps at different levels. Additionally, researchers have utilized pre-trained denoising diffusion probabilistic models (DDPMs) for training lightweight CD classifiers. Nevertheless, training a DDPM to generate intricately detailed, multi-channel remote sensing images requires months of training time and a substantial volume of unlabeled remote sensing datasets, making it significantly more complex than generating a single-channel change map. To overcome these challenges, we propose a novel end-to-end DDPM-based model architecture called change-aware diffusion model (CADM), which can be trained using a limited annotated dataset quickly. Furthermore, we introduce dynamic difference conditional encoding to enhance step-wise regional attention in DDPM for bitemporal images in CD datasets. This method establishes state-adaptive conditions for each sampling step, emphasizing two main innovative points of our model: 1) its end-to-end nature and 2) difference conditional encoding. We evaluate CADM on four remote sensing CD tasks with different ground scenarios, including CDD, WHU, Levier, and GVLM. Experimental results demonstrate that CADM significantly outperforms state-of-the-art methods, indicating the generalization and effectiveness of the proposed model.
PDF

点此查看论文截图

DFormer: Diffusion-guided Transformer for Universal Image Segmentation

Authors:Hefeng Wang, Jiale Cao, Rao Muhammad Anwer, Jin Xie, Fahad Shahbaz Khan, Yanwei Pang

This paper introduces an approach, named DFormer, for universal image segmentation. The proposed DFormer views universal image segmentation task as a denoising process using a diffusion model. DFormer first adds various levels of Gaussian noise to ground-truth masks, and then learns a model to predict denoising masks from corrupted masks. Specifically, we take deep pixel-level features along with the noisy masks as inputs to generate mask features and attention masks, employing diffusion-based decoder to perform mask prediction gradually. At inference, our DFormer directly predicts the masks and corresponding categories from a set of randomly-generated masks. Extensive experiments reveal the merits of our proposed contributions on different image segmentation tasks: panoptic segmentation, instance segmentation, and semantic segmentation. Our DFormer outperforms the recent diffusion-based panoptic segmentation method Pix2Seq-D with a gain of 3.6% on MS COCO val2017 set. Further, DFormer achieves promising semantic segmentation performance outperforming the recent diffusion-based method by 2.2% on ADE20K val set. Our source code and models will be publicly on https://github.com/cp3wan/DFormer
PDF Project website: https://github.com/cp3wan/DFormer

点此查看论文截图

Conditional Diffusion Models for Weakly Supervised Medical Image Segmentation

Authors:Xinrong Hu, Yu-Jen Chen, Tsung-Yi Ho, Yiyu Shi

Recent advances in denoising diffusion probabilistic models have shown great success in image synthesis tasks. While there are already works exploring the potential of this powerful tool in image semantic segmentation, its application in weakly supervised semantic segmentation (WSSS) remains relatively under-explored. Observing that conditional diffusion models (CDM) is capable of generating images subject to specific distributions, in this work, we utilize category-aware semantic information underlied in CDM to get the prediction mask of the target object with only image-level annotations. More specifically, we locate the desired class by approximating the derivative of the output of CDM w.r.t the input condition. Our method is different from previous diffusion model methods with guidance from an external classifier, which accumulates noises in the background during the reconstruction process. Our method outperforms state-of-the-art CAM and diffusion model methods on two public medical image segmentation datasets, which demonstrates that CDM is a promising tool in WSSS. Also, experiment shows our method is more time-efficient than existing diffusion model methods, making it practical for wider applications.
PDF

点此查看论文截图

Emergent Correspondence from Image Diffusion

Authors:Luming Tang, Menglin Jia, Qianqian Wang, Cheng Perng Phoo, Bharath Hariharan

Finding correspondences between images is a fundamental problem in computer vision. In this paper, we show that correspondence emerges in image diffusion models without any explicit supervision. We propose a simple strategy to extract this implicit knowledge out of diffusion networks as image features, namely DIffusion FeaTures (DIFT), and use them to establish correspondences between real images. Without any additional fine-tuning or supervision on the task-specific data or annotations, DIFT is able to outperform both weakly-supervised methods and competitive off-the-shelf features in identifying semantic, geometric, and temporal correspondences. Particularly for semantic correspondence, DIFT from Stable Diffusion is able to outperform DINO and OpenCLIP by 19 and 14 accuracy points respectively on the challenging SPair-71k benchmark. It even outperforms the state-of-the-art supervised methods on 9 out of 18 categories while remaining on par for the overall performance. Project page: https://diffusionfeatures.github.io
PDF Project page: https://diffusionfeatures.github.io

点此查看论文截图

Phoenix: A Federated Generative Diffusion Model

Authors:Fiona Victoria Stanley Jothiraj, Afra Mashhadi

Generative AI has made impressive strides in enabling users to create diverse and realistic visual content such as images, videos, and audio. However, training generative models on large centralized datasets can pose challenges in terms of data privacy, security, and accessibility. Federated learning (FL) is an approach that uses decentralized techniques to collaboratively train a shared deep learning model while retaining the training data on individual edge devices to preserve data privacy. This paper proposes a novel method for training a Denoising Diffusion Probabilistic Model (DDPM) across multiple data sources using FL techniques. Diffusion models, a newly emerging generative model, show promising results in achieving superior quality images than Generative Adversarial Networks (GANs). Our proposed method Phoenix is an unconditional diffusion model that leverages strategies to improve the data diversity of generated samples even when trained on data with statistical heterogeneity or Non-IID (Non-Independent and Identically Distributed) data. We demonstrate how our approach outperforms the default diffusion model in an FL setting. These results indicate that high-quality samples can be generated by maintaining data diversity, preserving privacy, and reducing communication between data sources, offering exciting new possibilities in the field of generative AI.
PDF

点此查看论文截图

Generative Semantic Communication: Diffusion Models Beyond Bit Recovery

Authors:Eleonora Grassucci, Sergio Barbarossa, Danilo Comminiello

Semantic communication is expected to be one of the cores of next-generation AI-based communications. One of the possibilities offered by semantic communication is the capability to regenerate, at the destination side, images or videos semantically equivalent to the transmitted ones, without necessarily recovering the transmitted sequence of bits. The current solutions still lack the ability to build complex scenes from the received partial information. Clearly, there is an unmet need to balance the effectiveness of generation methods and the complexity of the transmitted information, possibly taking into account the goal of communication. In this paper, we aim to bridge this gap by proposing a novel generative diffusion-guided framework for semantic communication that leverages the strong abilities of diffusion models in synthesizing multimedia content while preserving semantic features. We reduce bandwidth usage by sending highly-compressed semantic information only. Then, the diffusion model learns to synthesize semantic-consistent scenes through spatially-adaptive normalizations from such denoised semantic information. We prove, through an in-depth assessment of multiple scenarios, that our method outperforms existing solutions in generating high-quality images with preserved semantic information even in cases where the received content is significantly degraded. More specifically, our results show that objects, locations, and depths are still recognizable even in the presence of extremely noisy conditions of the communication channel. The code is available at https://github.com/ispamm/GESCO.
PDF

点此查看论文截图

Improving Diffusion-based Image Translation using Asymmetric Gradient Guidance

Authors:Gihyun Kwon, Jong Chul Ye

Diffusion models have shown significant progress in image translation tasks recently. However, due to their stochastic nature, there’s often a trade-off between style transformation and content preservation. Current strategies aim to disentangle style and content, preserving the source image’s structure while successfully transitioning from a source to a target domain under text or one-shot image conditions. Yet, these methods often require computationally intense fine-tuning of diffusion models or additional neural networks. To address these challenges, here we present an approach that guides the reverse process of diffusion sampling by applying asymmetric gradient guidance. This results in quicker and more stable image manipulation for both text-guided and image-guided image translation. Our model’s adaptability allows it to be implemented with both image- and latent-diffusion models. Experiments show that our method outperforms various state-of-the-art models in image translation tasks.
PDF

点此查看论文截图

Multi-modal Latent Diffusion

Authors:Mustapha Bounoua, Giulio Franzese, Pietro Michiardi

Multi-modal data-sets are ubiquitous in modern applications, and multi-modal Variational Autoencoders are a popular family of models that aim to learn a joint representation of the different modalities. However, existing approaches suffer from a coherence-quality tradeoff, where models with good generation quality lack generative coherence across modalities, and vice versa. We discuss the limitations underlying the unsatisfactory performance of existing methods, to motivate the need for a different approach. We propose a novel method that uses a set of independently trained, uni-modal, deterministic autoencoders. Individual latent variables are concatenated into a common latent space, which is fed to a masked diffusion model to enable generative modeling. We also introduce a new multi-time training method to learn the conditional score network for multi-modal diffusion. Our methodology substantially outperforms competitors in both generation quality and coherence, as shown through an extensive experimental campaign.
PDF

点此查看论文截图

Integrating Geometric Control into Text-to-Image Diffusion Models for High-Quality Detection Data Generation via Text Prompt

Authors:Kai Chen, Enze Xie, Zhe Chen, Lanqing Hong, Zhenguo Li, Dit-Yan Yeung

Diffusion models have attracted significant attention due to their remarkable ability to create content and generate data for tasks such as image classification. However, the usage of diffusion models to generate high-quality object detection data remains an underexplored area, where not only the image-level perceptual quality but also geometric conditions such as bounding boxes and camera views are essential. Previous studies have utilized either copy-paste synthesis or layout-to-image (L2I) generation with specifically designed modules to encode semantic layouts. In this paper, we propose GeoDiffusion, a simple framework that can flexibly translate various geometric conditions into text prompts and empower the pre-trained text-to-image (T2I) diffusion models for high-quality detection data generation. Unlike previous L2I methods, our GeoDiffusion is able to encode not only bounding boxes but also extra geometric conditions such as camera views in self-driving scenes. Extensive experiments demonstrate GeoDiffusion outperforms previous L2I methods while maintaining 4x training time faster. To the best of our knowledge, this is the first work to adopt diffusion models for layout-to-image generation with geometric conditions and demonstrate that L2I-generated images can be beneficial for improving the performance of object detectors.
PDF

点此查看论文截图

ARTIC3D: Learning Robust Articulated 3D Shapes from Noisy Web Image Collections

Authors:Chun-Han Yao, Amit Raj, Wei-Chih Hung, Yuanzhen Li, Michael Rubinstein, Ming-Hsuan Yang, Varun Jampani

Estimating 3D articulated shapes like animal bodies from monocular images is inherently challenging due to the ambiguities of camera viewpoint, pose, texture, lighting, etc. We propose ARTIC3D, a self-supervised framework to reconstruct per-instance 3D shapes from a sparse image collection in-the-wild. Specifically, ARTIC3D is built upon a skeleton-based surface representation and is further guided by 2D diffusion priors from Stable Diffusion. First, we enhance the input images with occlusions/truncation via 2D diffusion to obtain cleaner mask estimates and semantic features. Second, we perform diffusion-guided 3D optimization to estimate shape and texture that are of high-fidelity and faithful to input images. We also propose a novel technique to calculate more stable image-level gradients via diffusion models compared to existing alternatives. Finally, we produce realistic animations by fine-tuning the rendered shape and texture under rigid part transformations. Extensive evaluations on multiple existing datasets as well as newly introduced noisy web image collections with occlusions and truncation demonstrate that ARTIC3D outputs are more robust to noisy images, higher quality in terms of shape and texture details, and more realistic when animated. Project page: https://chhankyao.github.io/artic3d/
PDF Project page: https://chhankyao.github.io/artic3d/

点此查看论文截图

Designing a Better Asymmetric VQGAN for StableDiffusion

Authors:Zixin Zhu, Xuelu Feng, Dongdong Chen, Jianmin Bao, Le Wang, Yinpeng Chen, Lu Yuan, Gang Hua

StableDiffusion is a revolutionary text-to-image generator that is causing a stir in the world of image generation and editing. Unlike traditional methods that learn a diffusion model in pixel space, StableDiffusion learns a diffusion model in the latent space via a VQGAN, ensuring both efficiency and quality. It not only supports image generation tasks, but also enables image editing for real images, such as image inpainting and local editing. However, we have observed that the vanilla VQGAN used in StableDiffusion leads to significant information loss, causing distortion artifacts even in non-edited image regions. To this end, we propose a new asymmetric VQGAN with two simple designs. Firstly, in addition to the input from the encoder, the decoder contains a conditional branch that incorporates information from task-specific priors, such as the unmasked image region in inpainting. Secondly, the decoder is much heavier than the encoder, allowing for more detailed recovery while only slightly increasing the total inference cost. The training cost of our asymmetric VQGAN is cheap, and we only need to retrain a new asymmetric decoder while keeping the vanilla VQGAN encoder and StableDiffusion unchanged. Our asymmetric VQGAN can be widely used in StableDiffusion-based inpainting and local editing methods. Extensive experiments demonstrate that it can significantly improve the inpainting and editing performance, while maintaining the original text-to-image capability. The code is available at \url{https://github.com/buxiangzhiren/Asymmetric_VQGAN}.
PDF code is available at https://github.com/buxiangzhiren/Asymmetric_VQGAN

点此查看论文截图

Exposing flaws of generative model evaluation metrics and their unfair treatment of diffusion models

Authors:George Stein, Jesse C. Cresswell, Rasa Hosseinzadeh, Yi Sui, Brendan Leigh Ross, Valentin Villecroze, Zhaoyan Liu, Anthony L. Caterini, J. Eric T. Taylor, Gabriel Loaiza-Ganem

We systematically study a wide variety of image-based generative models spanning semantically-diverse datasets to understand and improve the feature extractors and metrics used to evaluate them. Using best practices in psychophysics, we measure human perception of image realism for generated samples by conducting the largest experiment evaluating generative models to date, and find that no existing metric strongly correlates with human evaluations. Comparing to 16 modern metrics for evaluating the overall performance, fidelity, diversity, and memorization of generative models, we find that the state-of-the-art perceptual realism of diffusion models as judged by humans is not reflected in commonly reported metrics such as FID. This discrepancy is not explained by diversity in generated samples, though one cause is over-reliance on Inception-V3. We address these flaws through a study of alternative self-supervised feature extractors, find that the semantic information encoded by individual networks strongly depends on their training procedure, and show that DINOv2-ViT-L/14 allows for much richer evaluation of generative models. Next, we investigate data memorization, and find that generative models do memorize training examples on simple, smaller datasets like CIFAR10, but not necessarily on more complex datasets like ImageNet. However, our experiments show that current metrics do not properly detect memorization; none in the literature is able to separate memorization from other phenomena such as underfitting or mode shrinkage. To facilitate further development of generative models and their evaluation we release all generated image datasets, human evaluation data, and a modular library to compute 16 common metrics for 8 different encoders at https://github.com/layer6ai-labs/dgm-eval.
PDF 50 pages, 29 figures, 12 tables, code at https://github.com/layer6ai-labs/dgm-eval

点此查看论文截图

Interpreting and Improving Diffusion Models Using the Euclidean Distance Function

Authors:Frank Permenter, Chenyang Yuan

Denoising is intuitively related to projection. Indeed, under the manifold hypothesis, adding random noise is approximately equivalent to orthogonal perturbation. Hence, learning to denoise is approximately learning to project. In this paper, we use this observation to reinterpret denoising diffusion models as approximate gradient descent applied to the Euclidean distance function. We then provide straight-forward convergence analysis of the DDIM sampler under simple assumptions on the projection-error of the denoiser. Finally, we propose a new sampler based on two simple modifications to DDIM using insights from our theoretical results. In as few as 5-10 function evaluations, our sampler achieves state-of-the-art FID scores on pretrained CIFAR-10 and CelebA models and can generate high quality samples on latent diffusion models.
PDF 18 pages, 6 figures, 2 tables

点此查看论文截图

Instructed Diffuser with Temporal Condition Guidance for Offline Reinforcement Learning

Authors:Jifeng Hu, Yanchao Sun, Sili Huang, SiYuan Guo, Hechang Chen, Li Shen, Lichao Sun, Yi Chang, Dacheng Tao

Recent works have shown the potential of diffusion models in computer vision and natural language processing. Apart from the classical supervised learning fields, diffusion models have also shown strong competitiveness in reinforcement learning (RL) by formulating decision-making as sequential generation. However, incorporating temporal information of sequential data and utilizing it to guide diffusion models to perform better generation is still an open challenge. In this paper, we take one step forward to investigate controllable generation with temporal conditions that are refined from temporal information. We observe the importance of temporal conditions in sequential generation in sufficient explorative scenarios and provide a comprehensive discussion and comparison of different temporal conditions. Based on the observations, we propose an effective temporally-conditional diffusion model coined Temporally-Composable Diffuser (TCD), which extracts temporal information from interaction sequences and explicitly guides generation with temporal conditions. Specifically, we separate the sequences into three parts according to time expansion and identify historical, immediate, and prospective conditions accordingly. Each condition preserves non-overlapping temporal information of sequences, enabling more controllable generation when we jointly use them to guide the diffuser. Finally, we conduct extensive experiments and analysis to reveal the favorable applicability of TCD in offline RL tasks, where our method reaches or matches the best performance compared with prior SOTA baselines.
PDF

点此查看论文截图

Multi-Architecture Multi-Expert Diffusion Models

Authors:Yunsung Lee, Jin-Young Kim, Hyojun Go, Myeongho Jeong, Shinhyeok Oh, Seungtaek Choi

Diffusion models have achieved impressive results in generating diverse and realistic data by employing multi-step denoising processes. However, the need for accommodating significant variations in input noise at each time-step has led to diffusion models requiring a large number of parameters for their denoisers. We have observed that diffusion models effectively act as filters for different frequency ranges at each time-step noise. While some previous works have introduced multi-expert strategies, assigning denoisers to different noise intervals, they overlook the importance of specialized operations for high and low frequencies. For instance, self-attention operations are effective at handling low-frequency components (low-pass filters), while convolutions excel at capturing high-frequency features (high-pass filters). In other words, existing diffusion models employ denoisers with the same architecture, without considering the optimal operations for each time-step noise. To address this limitation, we propose a novel approach called Multi-architecturE Multi-Expert (MEME), which consists of multiple experts with specialized architectures tailored to the operations required at each time-step interval. Through extensive experiments, we demonstrate that MEME outperforms large competitors in terms of both generation performance and computational efficiency.
PDF

点此查看论文截图

Non-autoregressive Conditional Diffusion Models for Time Series Prediction

Authors:Lifeng Shen, James Kwok

Recently, denoising diffusion models have led to significant breakthroughs in the generation of images, audio and text. However, it is still an open question on how to adapt their strong modeling ability to model time series. In this paper, we propose TimeDiff, a non-autoregressive diffusion model that achieves high-quality time series prediction with the introduction of two novel conditioning mechanisms: future mixup and autoregressive initialization. Similar to teacher forcing, future mixup allows parts of the ground-truth future predictions for conditioning, while autoregressive initialization helps better initialize the model with basic time series patterns such as short-term trends. Extensive experiments are performed on nine real-world datasets. Results show that TimeDiff consistently outperforms existing time series diffusion models, and also achieves the best overall performance across a variety of the existing strong baselines (including transformers and FiLM).
PDF Accepted by ICML 2023 (Poster)

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录