GAN


2023-06-01 更新

Realistic Noise Synthesis with Diffusion Models

Authors:Qi Wu, Mingyan Han, Ting Jiang, Haoqiang Fan, Bing Zeng, Shuaicheng Liu

Deep learning-based approaches have achieved remarkable performance in single-image denoising. However, training denoising models typically requires a large amount of data, which can be difficult to obtain in real-world scenarios. Furthermore, synthetic noise used in the past has often produced significant differences compared to real-world noise due to the complexity of the latter and the poor modeling ability of noise distributions of Generative Adversarial Network (GAN) models, resulting in residual noise and artifacts within denoising models. To address these challenges, we propose a novel method for synthesizing realistic noise using diffusion models. This approach enables us to generate large amounts of high-quality data for training denoising models by controlling camera settings to simulate different environmental conditions and employing guided multi-scale content information to ensure that our method is more capable of generating real noise with multi-frequency spatial correlations. In particular, we design an inversion mechanism for the setting, which extends our method to more public datasets without setting information. Based on the noise dataset we synthesized, we have conducted sufficient experiments on multiple benchmarks, and experimental results demonstrate that our method outperforms state-of-the-art methods on multiple benchmarks and metrics, demonstrating its effectiveness in synthesizing realistic noise for training denoising models.
PDF

点此查看论文截图

StyleAvatar3D: Leveraging Image-Text Diffusion Models for High-Fidelity 3D Avatar Generation

Authors:Chi Zhang, Yiwen Chen, Yijun Fu, Zhenglin Zhou, Gang YU, Billzb Wang, Bin Fu, Tao Chen, Guosheng Lin, Chunhua Shen

The recent advancements in image-text diffusion models have stimulated research interest in large-scale 3D generative models. Nevertheless, the limited availability of diverse 3D resources presents significant challenges to learning. In this paper, we present a novel method for generating high-quality, stylized 3D avatars that utilizes pre-trained image-text diffusion models for data generation and a Generative Adversarial Network (GAN)-based 3D generation network for training. Our method leverages the comprehensive priors of appearance and geometry offered by image-text diffusion models to generate multi-view images of avatars in various styles. During data generation, we employ poses extracted from existing 3D models to guide the generation of multi-view images. To address the misalignment between poses and images in data, we investigate view-specific prompts and develop a coarse-to-fine discriminator for GAN training. We also delve into attribute-related prompts to increase the diversity of the generated avatars. Additionally, we develop a latent diffusion model within the style space of StyleGAN to enable the generation of avatars based on image inputs. Our approach demonstrates superior performance over current state-of-the-art methods in terms of visual quality and diversity of the produced avatars.
PDF Project page: https://github.com/icoz69/StyleAvatar3D

点此查看论文截图

Control4D: Dynamic Portrait Editing by Learning 4D GAN from 2D Diffusion-based Editor

Authors:Ruizhi Shao, Jingxiang Sun, Cheng Peng, Zerong Zheng, Boyao Zhou, Hongwen Zhang, Yebin Liu

Recent years have witnessed considerable achievements in editing images with text instructions. When applying these editors to dynamic scene editing, the new-style scene tends to be temporally inconsistent due to the frame-by-frame nature of these 2D editors. To tackle this issue, we propose Control4D, a novel approach for high-fidelity and temporally consistent 4D portrait editing. Control4D is built upon an efficient 4D representation with a 2D diffusion-based editor. Instead of using direct supervisions from the editor, our method learns a 4D GAN from it and avoids the inconsistent supervision signals. Specifically, we employ a discriminator to learn the generation distribution based on the edited images and then update the generator with the discrimination signals. For more stable training, multi-level information is extracted from the edited images and used to facilitate the learning of the generator. Experimental results show that Control4D surpasses previous approaches and achieves more photo-realistic and consistent 4D editing performances. The link to our project website is https://control4darxiv.github.io.
PDF The link to our project website is https://control4darxiv.github.io

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录