2023-06-01 更新
DiffMatch: Diffusion Model for Dense Matching
Authors:Jisu Nam, Gyuseong Lee, Sunwoo Kim, Hyeonsu Kim, Hyoungwon Cho, Seyeon Kim, Seungryong Kim
The objective for establishing dense correspondence between paired images consists of two terms: a data term and a prior term. While conventional techniques focused on defining hand-designed prior terms, which are difficult to formulate, recent approaches have focused on learning the data term with deep neural networks without explicitly modeling the prior, assuming that the model itself has the capacity to learn an optimal prior from a large-scale dataset. The performance improvement was obvious, however, they often fail to address inherent ambiguities of matching, such as textureless regions, repetitive patterns, and large displacements. To address this, we propose DiffMatch, a novel conditional diffusion-based framework designed to explicitly model both the data and prior terms. Unlike previous approaches, this is accomplished by leveraging a conditional denoising diffusion model. DiffMatch consists of two main components: conditional denoising diffusion module and cost injection module. We stabilize the training process and reduce memory usage with a stage-wise training strategy. Furthermore, to boost performance, we introduce an inference technique that finds a better path to the accurate matching field. Our experimental results demonstrate significant performance improvements of our method over existing approaches, and the ablation studies validate our design choices along with the effectiveness of each component. Project page is available at https://ku-cvlab.github.io/DiffMatch/.
PDF Project page is available at https://ku-cvlab.github.io/DiffMatch/
点此查看论文截图
Video ControlNet: Towards Temporally Consistent Synthetic-to-Real Video Translation Using Conditional Image Diffusion Models
Authors:Ernie Chu, Shuo-Yen Lin, Jun-Cheng Chen
In this study, we present an efficient and effective approach for achieving temporally consistent synthetic-to-real video translation in videos of varying lengths. Our method leverages off-the-shelf conditional image diffusion models, allowing us to perform multiple synthetic-to-real image generations in parallel. By utilizing the available optical flow information from the synthetic videos, our approach seamlessly enforces temporal consistency among corresponding pixels across frames. This is achieved through joint noise optimization, effectively minimizing spatial and temporal discrepancies. To the best of our knowledge, our proposed method is the first to accomplish diverse and temporally consistent synthetic-to-real video translation using conditional image diffusion models. Furthermore, our approach does not require any training or fine-tuning of the diffusion models. Extensive experiments conducted on various benchmarks for synthetic-to-real video translation demonstrate the effectiveness of our approach, both quantitatively and qualitatively. Finally, we show that our method outperforms other baseline methods in terms of both temporal consistency and visual quality.
PDF
点此查看论文截图
PanoGen: Text-Conditioned Panoramic Environment Generation for Vision-and-Language Navigation
Authors:Jialu Li, Mohit Bansal
Vision-and-Language Navigation (VLN) requires the agent to follow language instructions to navigate through 3D environments. One main challenge in VLN is the limited availability of photorealistic training environments, which makes it hard to generalize to new and unseen environments. To address this problem, we propose PanoGen, a generation method that can potentially create an infinite number of diverse panoramic environments conditioned on text. Specifically, we collect room descriptions by captioning the room images in existing Matterport3D environments, and leverage a state-of-the-art text-to-image diffusion model to generate the new panoramic environments. We use recursive outpainting over the generated images to create consistent 360-degree panorama views. Our new panoramic environments share similar semantic information with the original environments by conditioning on text descriptions, which ensures the co-occurrence of objects in the panorama follows human intuition, and creates enough diversity in room appearance and layout with image outpainting. Lastly, we explore two ways of utilizing PanoGen in VLN pre-training and fine-tuning. We generate instructions for paths in our PanoGen environments with a speaker built on a pre-trained vision-and-language model for VLN pre-training, and augment the visual observation with our panoramic environments during agents’ fine-tuning to avoid overfitting to seen environments. Empirically, learning with our PanoGen environments achieves the new state-of-the-art on the Room-to-Room, Room-for-Room, and CVDN datasets. Pre-training with our PanoGen speaker data is especially effective for CVDN, which has under-specified instructions and needs commonsense knowledge. Lastly, we show that the agent can benefit from training with more generated panoramic environments, suggesting promising results for scaling up the PanoGen environments.
PDF Project Webpage: https://pano-gen.github.io/
点此查看论文截图
Fine-grained Text Style Transfer with Diffusion-Based Language Models
Authors:Yiwei Lyu, Tiange Luo, Jiacheng Shi, Todd C. Hollon, Honglak Lee
Diffusion probabilistic models have shown great success in generating high-quality images controllably, and researchers have tried to utilize this controllability into text generation domain. Previous works on diffusion-based language models have shown that they can be trained without external knowledge (such as pre-trained weights) and still achieve stable performance and controllability. In this paper, we trained a diffusion-based model on StylePTB dataset, the standard benchmark for fine-grained text style transfers. The tasks in StylePTB requires much more refined control over the output text compared to tasks evaluated in previous works, and our model was able to achieve state-of-the-art performance on StylePTB on both individual and compositional transfers. Moreover, our model, trained on limited data from StylePTB without external knowledge, outperforms previous works that utilized pretrained weights, embeddings, and external grammar parsers, and this may indicate that diffusion-based language models have great potential under low-resource settings.
PDF Accepted at Repl4NLP workshop at ACL 2023
点此查看论文截图
Label-Retrieval-Augmented Diffusion Models for Learning from Noisy Labels
Authors:Jian Chen, Ruiyi Zhang, Tong Yu, Rohan Sharma, Zhiqiang Xu, Tong Sun, Changyou Chen
Learning from noisy labels is an important and long-standing problem in machine learning for real applications. One of the main research lines focuses on learning a label corrector to purify potential noisy labels. However, these methods typically rely on strict assumptions and are limited to certain types of label noise. In this paper, we reformulate the label-noise problem from a generative-model perspective, $\textit{i.e.}$, labels are generated by gradually refining an initial random guess. This new perspective immediately enables existing powerful diffusion models to seamlessly learn the stochastic generative process. Once the generative uncertainty is modeled, we can perform classification inference using maximum likelihood estimation of labels. To mitigate the impact of noisy labels, we propose the $\textbf{L}$abel-$\textbf{R}$etrieval-$\textbf{A}$ugmented (LRA) diffusion model, which leverages neighbor consistency to effectively construct pseudo-clean labels for diffusion training. Our model is flexible and general, allowing easy incorporation of different types of conditional information, $\textit{e.g.}$, use of pre-trained models, to further boost model performance. Extensive experiments are conducted for evaluation. Our model achieves new state-of-the-art (SOTA) results on all the standard real-world benchmark datasets. Remarkably, by incorporating conditional information from the powerful CLIP model, our method can boost the current SOTA accuracy by 10-20 absolute points in many cases.
PDF
点此查看论文截图
Spotlight Attention: Robust Object-Centric Learning With a Spatial Locality Prior
Authors:Ayush Chakravarthy, Trang Nguyen, Anirudh Goyal, Yoshua Bengio, Michael C. Mozer
The aim of object-centric vision is to construct an explicit representation of the objects in a scene. This representation is obtained via a set of interchangeable modules called \emph{slots} or \emph{object files} that compete for local patches of an image. The competition has a weak inductive bias to preserve spatial continuity; consequently, one slot may claim patches scattered diffusely throughout the image. In contrast, the inductive bias of human vision is strong, to the degree that attention has classically been described with a spotlight metaphor. We incorporate a spatial-locality prior into state-of-the-art object-centric vision models and obtain significant improvements in segmenting objects in both synthetic and real-world datasets. Similar to human visual attention, the combination of image content and spatial constraints yield robust unsupervised object-centric learning, including less sensitivity to model hyperparameters.
PDF 16 pages, 3 figures, under review at NeurIPS 2023
点此查看论文截图
Boosting Text-to-Image Diffusion Models with Fine-Grained Semantic Rewards
Authors:Guian Fang, Zutao Jiang, Jianhua Han, Guangsong Lu, Hang Xu, Xiaodan Liang
Recent advances in text-to-image diffusion models have achieved remarkable success in generating high-quality, realistic images from given text prompts. However, previous methods fail to perform accurate modality alignment between text concepts and generated images due to the lack of fine-level semantic guidance that successfully diagnoses the modality discrepancy. In this paper, we propose FineRewards to improve the alignment between text and images in text-to-image diffusion models by introducing two new fine-grained semantic rewards: the caption reward and the Semantic Segment Anything (SAM) reward. From the global semantic view, the caption reward generates a corresponding detailed caption that depicts all important contents in the synthetic image via a BLIP-2 model and then calculates the reward score by measuring the similarity between the generated caption and the given prompt. From the local semantic view, the SAM reward segments the generated images into local parts with category labels, and scores the segmented parts by measuring the likelihood of each category appearing in the prompted scene via a large language model, i.e., Vicuna-7B. Additionally, we adopt an assemble reward-ranked learning strategy to enable the integration of multiple reward functions to jointly guide the model training. Adapting results of text-to-image models on the MS-COCO benchmark show that the proposed semantic reward outperforms other baseline reward functions with a considerable margin on both visual quality and semantic similarity with the input prompt. Moreover, by adopting the assemble reward-ranked learning strategy, we further demonstrate that model performance is further improved when adapting under the unifying of the proposed semantic reward with the current image rewards.
PDF
点此查看论文截图
Direct Diffusion Bridge using Data Consistency for Inverse Problems
Authors:Hyungjin Chung, Jeongsol Kim, Jong Chul Ye
Diffusion model-based inverse problem solvers have shown impressive performance, but are limited in speed, mostly as they require reverse diffusion sampling starting from noise. Several recent works have tried to alleviate this problem by building a diffusion process, directly bridging the clean and the corrupted for specific inverse problems. In this paper, we first unify these existing works under the name Direct Diffusion Bridges (DDB), showing that while motivated by different theories, the resulting algorithms only differ in the choice of parameters. Then, we highlight a critical limitation of the current DDB framework, namely that it does not ensure data consistency. To address this problem, we propose a modified inference procedure that imposes data consistency without the need for fine-tuning. We term the resulting method data Consistent DDB (CDDB), which outperforms its inconsistent counterpart in terms of both perception and distortion metrics, thereby effectively pushing the Pareto-frontier toward the optimum. Our proposed method achieves state-of-the-art results on both evaluation criteria, showcasing its superiority over existing methods.
PDF 16 pages, 6 figures
点此查看论文截图
MetaDiffuser: Diffusion Model as Conditional Planner for Offline Meta-RL
Authors:Fei Ni, Jianye Hao, Yao Mu, Yifu Yuan, Yan Zheng, Bin Wang, Zhixuan Liang
Recently, diffusion model shines as a promising backbone for the sequence modeling paradigm in offline reinforcement learning(RL). However, these works mostly lack the generalization ability across tasks with reward or dynamics change. To tackle this challenge, in this paper we propose a task-oriented conditioned diffusion planner for offline meta-RL(MetaDiffuser), which considers the generalization problem as conditional trajectory generation task with contextual representation. The key is to learn a context conditioned diffusion model which can generate task-oriented trajectories for planning across diverse tasks. To enhance the dynamics consistency of the generated trajectories while encouraging trajectories to achieve high returns, we further design a dual-guided module in the sampling process of the diffusion model. The proposed framework enjoys the robustness to the quality of collected warm-start data from the testing task and the flexibility to incorporate with different task representation method. The experiment results on MuJoCo benchmarks show that MetaDiffuser outperforms other strong offline meta-RL baselines, demonstrating the outstanding conditional generation ability of diffusion architecture.
PDF 19 pages, 4 figures, accepted by ICML 23’
点此查看论文截图
Tree-Ring Watermarks: Fingerprints for Diffusion Images that are Invisible and Robust
Authors:Yuxin Wen, John Kirchenbauer, Jonas Geiping, Tom Goldstein
Watermarking the outputs of generative models is a crucial technique for tracing copyright and preventing potential harm from AI-generated content. In this paper, we introduce a novel technique called Tree-Ring Watermarking that robustly fingerprints diffusion model outputs. Unlike existing methods that perform post-hoc modifications to images after sampling, Tree-Ring Watermarking subtly influences the entire sampling process, resulting in a model fingerprint that is invisible to humans. The watermark embeds a pattern into the initial noise vector used for sampling. These patterns are structured in Fourier space so that they are invariant to convolutions, crops, dilations, flips, and rotations. After image generation, the watermark signal is detected by inverting the diffusion process to retrieve the noise vector, which is then checked for the embedded signal. We demonstrate that this technique can be easily applied to arbitrary diffusion models, including text-conditioned Stable Diffusion, as a plug-in with negligible loss in FID. Our watermark is semantically hidden in the image space and is far more robust than watermarking alternatives that are currently deployed. Code is available at github.com/YuxinWenRick/tree-ring-watermark.
PDF 16 pages, 8 figures, code is available at https://github.com/YuxinWenRick/tree-ring-watermark
点此查看论文截图
A Unified Conditional Framework for Diffusion-based Image Restoration
Authors:Yi Zhang, Xiaoyu Shi, Dasong Li, Xiaogang Wang, Jian Wang, Hongsheng Li
Diffusion Probabilistic Models (DPMs) have recently shown remarkable performance in image generation tasks, which are capable of generating highly realistic images. When adopting DPMs for image restoration tasks, the crucial aspect lies in how to integrate the conditional information to guide the DPMs to generate accurate and natural output, which has been largely overlooked in existing works. In this paper, we present a unified conditional framework based on diffusion models for image restoration. We leverage a lightweight UNet to predict initial guidance and the diffusion model to learn the residual of the guidance. By carefully designing the basic module and integration module for the diffusion model block, we integrate the guidance and other auxiliary conditional information into every block of the diffusion model to achieve spatially-adaptive generation conditioning. To handle high-resolution images, we propose a simple yet effective inter-step patch-splitting strategy to produce arbitrary-resolution images without grid artifacts. We evaluate our conditional framework on three challenging tasks: extreme low-light denoising, deblurring, and JPEG restoration, demonstrating its significant improvements in perceptual quality and the generalization to restoration tasks.
PDF
点此查看论文截图
Efficient Diffusion Policies for Offline Reinforcement Learning
Authors:Bingyi Kang, Xiao Ma, Chao Du, Tianyu Pang, Shuicheng Yan
Offline reinforcement learning (RL) aims to learn optimal policies from offline datasets, where the parameterization of policies is crucial but often overlooked. Recently, Diffsuion-QL significantly boosts the performance of offline RL by representing a policy with a diffusion model, whose success relies on a parametrized Markov Chain with hundreds of steps for sampling. However, Diffusion-QL suffers from two critical limitations. 1) It is computationally inefficient to forward and backward through the whole Markov chain during training. 2) It is incompatible with maximum likelihood-based RL algorithms (e.g., policy gradient methods) as the likelihood of diffusion models is intractable. Therefore, we propose efficient diffusion policy (EDP) to overcome these two challenges. EDP approximately constructs actions from corrupted ones at training to avoid running the sampling chain. We conduct extensive experiments on the D4RL benchmark. The results show that EDP can reduce the diffusion policy training time from 5 days to 5 hours on gym-locomotion tasks. Moreover, we show that EDP is compatible with various offline RL algorithms (TD3, CRR, and IQL) and achieves new state-of-the-art on D4RL by large margins over previous methods. Our code is available at https://github.com/sail-sg/edp.
PDF preprint
点此查看论文截图
Control4D: Dynamic Portrait Editing by Learning 4D GAN from 2D Diffusion-based Editor
Authors:Ruizhi Shao, Jingxiang Sun, Cheng Peng, Zerong Zheng, Boyao Zhou, Hongwen Zhang, Yebin Liu
Recent years have witnessed considerable achievements in editing images with text instructions. When applying these editors to dynamic scene editing, the new-style scene tends to be temporally inconsistent due to the frame-by-frame nature of these 2D editors. To tackle this issue, we propose Control4D, a novel approach for high-fidelity and temporally consistent 4D portrait editing. Control4D is built upon an efficient 4D representation with a 2D diffusion-based editor. Instead of using direct supervisions from the editor, our method learns a 4D GAN from it and avoids the inconsistent supervision signals. Specifically, we employ a discriminator to learn the generation distribution based on the edited images and then update the generator with the discrimination signals. For more stable training, multi-level information is extracted from the edited images and used to facilitate the learning of the generator. Experimental results show that Control4D surpasses previous approaches and achieves more photo-realistic and consistent 4D editing performances. The link to our project website is https://control4darxiv.github.io.
PDF The link to our project website is https://control4darxiv.github.io
点此查看论文截图
Learning Explicit Contact for Implicit Reconstruction of Hand-held Objects from Monocular Images
Authors:Junxing Hu, Hongwen Zhang, Zerui Chen, Mengcheng Li, Yunlong Wang, Yebin Liu, Zhenan Sun
Reconstructing hand-held objects from monocular RGB images is an appealing yet challenging task. In this task, contacts between hands and objects provide important cues for recovering the 3D geometry of the hand-held objects. Though recent works have employed implicit functions to achieve impressive progress, they ignore formulating contacts in their frameworks, which results in producing less realistic object meshes. In this work, we explore how to model contacts in an explicit way to benefit the implicit reconstruction of hand-held objects. Our method consists of two components: explicit contact prediction and implicit shape reconstruction. In the first part, we propose a new subtask of directly estimating 3D hand-object contacts from a single image. The part-level and vertex-level graph-based transformers are cascaded and jointly learned in a coarse-to-fine manner for more accurate contact probabilities. In the second part, we introduce a novel method to diffuse estimated contact states from the hand mesh surface to nearby 3D space and leverage diffused contact probabilities to construct the implicit neural representation for the manipulated object. Benefiting from estimating the interaction patterns between the hand and the object, our method can reconstruct more realistic object meshes, especially for object parts that are in contact with hands. Extensive experiments on challenging benchmarks show that the proposed method outperforms the current state of the arts by a great margin.
PDF 17 pages, 8 figures