2023-05-30 更新
Three Towers: Flexible Contrastive Learning with Pretrained Image Models
Authors:Jannik Kossen, Mark Collier, Basil Mustafa, Xiao Wang, Xiaohua Zhai, Lucas Beyer, Andreas Steiner, Jesse Berent, Rodolphe Jenatton, Efi Kokiopoulou
We introduce Three Towers (3T), a flexible method to improve the contrastive learning of vision-language models by incorporating pretrained image classifiers. While contrastive models are usually trained from scratch, LiT (Zhai et al., 2022) has recently shown performance gains from using pretrained classifier embeddings. However, LiT directly replaces the image tower with the frozen embeddings, excluding any potential benefits of contrastively training the image tower. With 3T, we propose a more flexible strategy that allows the image tower to benefit from both pretrained embeddings and contrastive training. To achieve this, we introduce a third tower that contains the frozen pretrained embeddings, and we encourage alignment between this third tower and the main image-text towers. Empirically, 3T consistently improves over LiT and the CLIP-style from-scratch baseline for retrieval tasks. For classification, 3T reliably improves over the from-scratch baseline, and while it underperforms relative to LiT for JFT-pretrained models, it outperforms LiT for ImageNet-21k and Places365 pretraining.
PDF
点此查看论文截图
Contrast, Attend and Diffuse to Decode High-Resolution Images from Brain Activities
Authors:Jingyuan Sun, Mingxiao Li, Zijiao Chen, Yunhao Zhang, Shaonan Wang, Marie-Francine Moens
Decoding visual stimuli from neural responses recorded by functional Magnetic Resonance Imaging (fMRI) presents an intriguing intersection between cognitive neuroscience and machine learning, promising advancements in understanding human visual perception and building non-invasive brain-machine interfaces. However, the task is challenging due to the noisy nature of fMRI signals and the intricate pattern of brain visual representations. To mitigate these challenges, we introduce a two-phase fMRI representation learning framework. The first phase pre-trains an fMRI feature learner with a proposed Double-contrastive Mask Auto-encoder to learn denoised representations. The second phase tunes the feature learner to attend to neural activation patterns most informative for visual reconstruction with guidance from an image auto-encoder. The optimized fMRI feature learner then conditions a latent diffusion model to reconstruct image stimuli from brain activities. Experimental results demonstrate our model’s superiority in generating high-resolution and semantically accurate images, substantially exceeding previous state-of-the-art methods by 39.34% in the 50-way-top-1 semantic classification accuracy. Our research invites further exploration of the decoding task’s potential and contributes to the development of non-invasive brain-machine interfaces.
PDF 17 pages, 6 figures, conference
点此查看论文截图
Contrastive Learning Based Recursive Dynamic Multi-Scale Network for Image Deraining
Authors:Zhiying Jiang, Risheng Liu, Shuzhou Yang, Zengxi Zhang, Xin Fan
Rain streaks significantly decrease the visibility of captured images and are also a stumbling block that restricts the performance of subsequent computer vision applications. The existing deep learning-based image deraining methods employ manually crafted networks and learn a straightforward projection from rainy images to clear images. In pursuit of better deraining performance, they focus on elaborating a more complicated architecture rather than exploiting the intrinsic properties of the positive and negative information. In this paper, we propose a contrastive learning-based image deraining method that investigates the correlation between rainy and clear images and leverages a contrastive prior to optimize the mutual information of the rainy and restored counterparts. Given the complex and varied real-world rain patterns, we develop a recursive mechanism. It involves multi-scale feature extraction and dynamic cross-level information recruitment modules. The former advances the portrayal of diverse rain patterns more precisely, while the latter can selectively compensate high-level features for shallow-level information. We term the proposed recursive dynamic multi-scale network with a contrastive prior, RDMC. Extensive experiments on synthetic benchmarks and real-world images demonstrate that the proposed RDMC delivers strong performance on the depiction of rain streaks and outperforms the state-of-the-art methods. Moreover, a practical evaluation of object detection and semantic segmentation shows the effectiveness of the proposed method.
PDF 13 pages, 16 figures
点此查看论文截图
Reconstructing the Mind’s Eye: fMRI-to-Image with Contrastive Learning and Diffusion Priors
Authors:Paul S. Scotti, Atmadeep Banerjee, Jimmie Goode, Stepan Shabalin, Alex Nguyen, Ethan Cohen, Aidan J. Dempster, Nathalie Verlinde, Elad Yundler, David Weisberg, Kenneth A. Norman, Tanishq Mathew Abraham
We present MindEye, a novel fMRI-to-image approach to retrieve and reconstruct viewed images from brain activity. Our model comprises two parallel submodules that are specialized for retrieval (using contrastive learning) and reconstruction (using a diffusion prior). MindEye can map fMRI brain activity to any high dimensional multimodal latent space, like CLIP image space, enabling image reconstruction using generative models that accept embeddings from this latent space. We comprehensively compare our approach with other existing methods, using both qualitative side-by-side comparisons and quantitative evaluations, and show that MindEye achieves state-of-the-art performance in both reconstruction and retrieval tasks. In particular, MindEye can retrieve the exact original image even among highly similar candidates indicating that its brain embeddings retain fine-grained image-specific information. This allows us to accurately retrieve images even from large-scale databases like LAION-5B. We demonstrate through ablations that MindEye’s performance improvements over previous methods result from specialized submodules for retrieval and reconstruction, improved training techniques, and training models with orders of magnitude more parameters. Furthermore, we show that MindEye can better preserve low-level image features in the reconstructions by using img2img, with outputs from a separate autoencoder. All code is available on GitHub.
PDF Project Page at https://medarc-ai.github.io/mindeye-website/. Code at https://github.com/MedARC-AI/fMRI-reconstruction-NSD/