Vision Transformer


2023-05-30 更新

VisorGPT: Learning Visual Prior via Generative Pre-Training

Authors:Jinheng Xie, Kai Ye, Yudong Li, Yuexiang Li, Kevin Qinghong Lin, Yefeng Zheng, Linlin Shen, Mike Zheng Shou

Various stuff and things in visual data possess specific traits, which can be learned by deep neural networks and are implicitly represented as the visual prior, \emph{e.g.,} object location and shape, in the model. Such prior potentially impacts many vision tasks. For example, in conditional image synthesis, spatial conditions failing to adhere to the prior can result in visually inaccurate synthetic results. This work aims to explicitly learn the visual prior and enable the customization of sampling. Inspired by advances in language modeling, we propose to learn Visual prior via Generative Pre-Training, dubbed VisorGPT. By discretizing visual locations of objects, \emph{e.g.,} bounding boxes, human pose, and instance masks, into sequences, VisorGPT can model visual prior through likelihood maximization. Besides, prompt engineering is investigated to unify various visual locations and enable customized sampling of sequential outputs from the learned prior. Experimental results demonstrate that VisorGPT can effectively model the visual prior, which can be employed for many vision tasks, such as customizing accurate human pose for conditional image synthesis models like ControlNet. Code will be released at https://github.com/Sierkinhane/VisorGPT.
PDF Project web-page: https://sierkinhane.github.io/visor-gpt/

点此查看论文截图

COMCAT: Towards Efficient Compression and Customization of Attention-Based Vision Models

Authors:Jinqi Xiao, Miao Yin, Yu Gong, Xiao Zang, Jian Ren, Bo Yuan

Attention-based vision models, such as Vision Transformer (ViT) and its variants, have shown promising performance in various computer vision tasks. However, these emerging architectures suffer from large model sizes and high computational costs, calling for efficient model compression solutions. To date, pruning ViTs has been well studied, while other compression strategies that have been widely applied in CNN compression, e.g., model factorization, is little explored in the context of ViT compression. This paper explores an efficient method for compressing vision transformers to enrich the toolset for obtaining compact attention-based vision models. Based on the new insight on the multi-head attention layer, we develop a highly efficient ViT compression solution, which outperforms the state-of-the-art pruning methods. For compressing DeiT-small and DeiT-base models on ImageNet, our proposed approach can achieve 0.45% and 0.76% higher top-1 accuracy even with fewer parameters. Our finding can also be applied to improve the customization efficiency of text-to-image diffusion models, with much faster training (up to $2.6\times$ speedup) and lower extra storage cost (up to $1927.5\times$ reduction) than the existing works.
PDF ICML 2023 Poster

点此查看论文截图

Vision Transformers for Small Histological Datasets Learned through Knowledge Distillation

Authors:Neel Kanwal, Trygve Eftestol, Farbod Khoraminia, Tahlita CM Zuiverloon, Kjersti Engan

Computational Pathology (CPATH) systems have the potential to automate diagnostic tasks. However, the artifacts on the digitized histological glass slides, known as Whole Slide Images (WSIs), may hamper the overall performance of CPATH systems. Deep Learning (DL) models such as Vision Transformers (ViTs) may detect and exclude artifacts before running the diagnostic algorithm. A simple way to develop robust and generalized ViTs is to train them on massive datasets. Unfortunately, acquiring large medical datasets is expensive and inconvenient, prompting the need for a generalized artifact detection method for WSIs. In this paper, we present a student-teacher recipe to improve the classification performance of ViT for the air bubbles detection task. ViT, trained under the student-teacher framework, boosts its performance by distilling existing knowledge from the high-capacity teacher model. Our best-performing ViT yields 0.961 and 0.911 F1-score and MCC, respectively, observing a 7% gain in MCC against stand-alone training. The proposed method presents a new perspective of leveraging knowledge distillation over transfer learning to encourage the use of customized transformers for efficient preprocessing pipelines in the CPATH systems.
PDF Accepted at PAKDD 2023

点此查看论文截图

LowDINO — A Low Parameter Self Supervised Learning Model

Authors:Sai Krishna Prathapaneni, Shvejan Shashank, Srikar Reddy K

This research aims to explore the possibility of designing a neural network architecture that allows for small networks to adopt the properties of huge networks, which have shown success in self-supervised learning (SSL), for all the downstream tasks like image classification, segmentation, etc. Previous studies have shown that using convolutional neural networks (ConvNets) can provide inherent inductive bias, which is crucial for learning representations in deep learning models. To reduce the number of parameters, attention mechanisms are utilized through the usage of MobileViT blocks, resulting in a model with less than 5 million parameters. The model is trained using self-distillation with momentum encoder and a student-teacher architecture is also employed, where the teacher weights use vision transformers (ViTs) from recent SOTA SSL models. The model is trained on the ImageNet1k dataset. This research provides an approach for designing smaller, more efficient neural network architectures that can perform SSL tasks comparable to heavy models
PDF

点此查看论文截图

Deeply Coupled Cross-Modal Prompt Learning

Authors:Xuejing Liu, Wei Tang, Jinghui Lu, Rui Zhao, Zhaojun Guo, Fei Tan

Recent advancements in multimodal foundation models (e.g., CLIP) have excelled in zero-shot generalization. Prompt tuning involved in the knowledge transfer from foundation models to downstream tasks has gained significant attention recently. Existing prompt-tuning methods in cross-modal learning, however, either solely focus on language branch, or learn vision-language interaction in a shallow mechanism. In this context, we propose a Deeply coupled Cross-modal Prompt learning (DCP) method based on CLIP. DCP flexibly accommodates the interplay between vision and language with a Cross-Modal Prompt Attention (CMPA) mechanism, which enables the mutual exchange of respective representation through a well-connected multi-head attention module progressively and strongly. We then conduct comprehensive few-shot learning experiments on 11 image classification datasets and analyze the robustness to domain shift as well. Thorough experimental analysis evidently demonstrates the superb few-shot generalization and compelling domain adaption capacity of a well-executed DCP. The code can be found at \href{https://github.com/GingL/CMPA}{https://github.com/GingL/CMPA}.
PDF Accepted by ACL 2023 findings

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录