2023-05-30 更新
Attributing Image Generative Models using Latent Fingerprints
Authors:Guangyu Nie, Changhoon Kim, Yezhou Yang, Yi Ren
Generative models have enabled the creation of contents that are indistinguishable from those taken from nature. Open-source development of such models raised concerns about the risks of their misuse for malicious purposes. One potential risk mitigation strategy is to attribute generative models via fingerprinting. Current fingerprinting methods exhibit a significant tradeoff between robust attribution accuracy and generation quality while lacking design principles to improve this tradeoff. This paper investigates the use of latent semantic dimensions as fingerprints, from where we can analyze the effects of design variables, including the choice of fingerprinting dimensions, strength, and capacity, on the accuracy-quality tradeoff. Compared with previous SOTA, our method requires minimum computation and is more applicable to large-scale models. We use StyleGAN2 and the latent diffusion model to demonstrate the efficacy of our method.
PDF
点此查看论文截图
CCDWT-GAN: Generative Adversarial Networks Based on Color Channel Using Discrete Wavelet Transform for Document Image Binarization
Authors:Rui-Yang Ju, Yu-Shian Lin, Jen-Shiun Chiang, Chih-Chia Chen, Wei-Han Chen, Chun-Tse Chien
To efficiently extract the textual information from color degraded document images is an important research topic. Long-term imperfect preservation of ancient documents has led to various types of degradation such as page staining, paper yellowing, and ink bleeding; these degradations badly impact the image processing for information extraction. In this paper, we present CCDWT-GAN, a generative adversarial network (GAN) that utilizes the discrete wavelet transform (DWT) on RGB (red, green, blue) channel splited images. The proposed method comprises three stages: image preprocessing, image enhancement, and image binarization. This work conducts comparative experiments in the image preprocessing stage to determine the optimal selection of DWT with normalization. Additionally, we perform an ablation study on the results of the image enhancement stage and the image binarization stage to validate their positive effect on the model performance. This work compares the performance of the proposed method with other state-of-the-art (SOTA) methods on DIBCO and H-DIBCO ((Handwritten) Document Image Binarization Competition) datasets. The experimental results demonstrate that CCDWT-GAN achieves a top two performance on multiple benchmark datasets, and outperforms other SOTA methods.
PDF
点此查看论文截图
Multi-Modal Face Stylization with a Generative Prior
Authors:Mengtian Li, Yi Dong, Minxuan Lin, Haibin Huang, Pengfei Wan, Chongyang Ma
In this work, we introduce a new approach for artistic face stylization. Despite existing methods achieving impressive results in this task, there is still room for improvement in generating high-quality stylized faces with diverse styles and accurate facial reconstruction. Our proposed framework, MMFS, supports multi-modal face stylization by leveraging the strengths of StyleGAN and integrates it into an encoder-decoder architecture. Specifically, we use the mid-resolution and high-resolution layers of StyleGAN as the decoder to generate high-quality faces, while aligning its low-resolution layer with the encoder to extract and preserve input facial details. We also introduce a two-stage training strategy, where we train the encoder in the first stage to align the feature maps with StyleGAN and enable a faithful reconstruction of input faces. In the second stage, the entire network is fine-tuned with artistic data for stylized face generation. To enable the fine-tuned model to be applied in zero-shot and one-shot stylization tasks, we train an additional mapping network from the large-scale Contrastive-Language-Image-Pre-training (CLIP) space to a latent $w+$ space of fine-tuned StyleGAN. Qualitative and quantitative experiments show that our framework achieves superior face stylization performance in both one-shot and zero-shot stylization tasks, outperforming state-of-the-art methods by a large margin.
PDF