Domain Adaptation


2023-05-30 更新

Coping with low data availability for social media crisis message categorisation

Authors:Congcong Wang

During crisis situations, social media allows people to quickly share information, including messages requesting help. This can be valuable to emergency responders, who need to categorise and prioritise these messages based on the type of assistance being requested. However, the high volume of messages makes it difficult to filter and prioritise them without the use of computational techniques. Fully supervised filtering techniques for crisis message categorisation typically require a large amount of annotated training data, but this can be difficult to obtain during an ongoing crisis and is expensive in terms of time and labour to create. This thesis focuses on addressing the challenge of low data availability when categorising crisis messages for emergency response. It first presents domain adaptation as a solution for this problem, which involves learning a categorisation model from annotated data from past crisis events (source domain) and adapting it to categorise messages from an ongoing crisis event (target domain). In many-to-many adaptation, where the model is trained on multiple past events and adapted to multiple ongoing events, a multi-task learning approach is proposed using pre-trained language models. This approach outperforms baselines and an ensemble approach further improves performance…
PDF

点此查看论文截图

Self-Supervised Reinforcement Learning that Transfers using Random Features

Authors:Boyuan Chen, Chuning Zhu, Pulkit Agrawal, Kaiqing Zhang, Abhishek Gupta

Model-free reinforcement learning algorithms have exhibited great potential in solving single-task sequential decision-making problems with high-dimensional observations and long horizons, but are known to be hard to generalize across tasks. Model-based RL, on the other hand, learns task-agnostic models of the world that naturally enables transfer across different reward functions, but struggles to scale to complex environments due to the compounding error. To get the best of both worlds, we propose a self-supervised reinforcement learning method that enables the transfer of behaviors across tasks with different rewards, while circumventing the challenges of model-based RL. In particular, we show self-supervised pre-training of model-free reinforcement learning with a number of random features as rewards allows implicit modeling of long-horizon environment dynamics. Then, planning techniques like model-predictive control using these implicit models enable fast adaptation to problems with new reward functions. Our method is self-supervised in that it can be trained on offline datasets without reward labels, but can then be quickly deployed on new tasks. We validate that our proposed method enables transfer across tasks on a variety of manipulation and locomotion domains in simulation, opening the door to generalist decision-making agents.
PDF

点此查看论文截图

Condition-Invariant Semantic Segmentation

Authors:Christos Sakaridis, David Bruggemann, Fisher Yu, Luc Van Gool

Adaptation of semantic segmentation networks to different visual conditions from those for which ground-truth annotations are available at training is vital for robust perception in autonomous cars and robots. However, previous work has shown that most feature-level adaptation methods, which employ adversarial training and are validated on synthetic-to-real adaptation, provide marginal gains in normal-to-adverse condition-level adaptation, being outperformed by simple pixel-level adaptation via stylization. Motivated by these findings, we propose to leverage stylization in performing feature-level adaptation by aligning the deep features extracted by the encoder of the network from the original and the stylized view of each input image with a novel feature invariance loss. In this way, we encourage the encoder to extract features that are invariant to the style of the input, allowing the decoder to focus on parsing these features and not on further abstracting from the specific style of the input. We implement our method, named Condition-Invariant Semantic Segmentation (CISS), on the top-performing domain adaptation architecture and demonstrate a significant improvement over previous state-of-the-art methods both on Cityscapes$\to$ACDC and Cityscapes$\to$Dark Zurich adaptation. In particular, CISS is ranked first among all published unsupervised domain adaptation methods on the public ACDC leaderboard. Our method is also shown to generalize well to domains unseen during training, outperforming competing domain adaptation approaches on BDD100K-night and Nighttime Driving. Code is publicly available at https://github.com/SysCV/CISS .
PDF

点此查看论文截图

DNA-GPT: Divergent N-Gram Analysis for Training-Free Detection of GPT-Generated Text

Authors:Xianjun Yang, Wei Cheng, Linda Petzold, William Yang Wang, Haifeng Chen

Large language models (LLMs) have notably enhanced the fluency and diversity of machine-generated text. However, this progress also presents a significant challenge in detecting the origin of a given text, and current research on detection methods lags behind the rapid evolution of LLMs. Conventional training-based methods have limitations in flexibility, particularly when adapting to new domains, and they often lack explanatory power. To address this gap, we propose a novel training-free detection strategy called Divergent N-Gram Analysis (DNA-GPT). Given a text, we first truncate it in the middle and then use only the preceding portion as input to the LLMs to regenerate the new remaining parts. By analyzing the differences between the original and new remaining parts through N-gram analysis in black-box or probability divergence in white-box, we can clearly illustrate significant discrepancies between machine-generated and human-written text. We conducted extensive experiments on the most advanced LLMs from OpenAI, including text-davinci-003, GPT-3.5-turbo, and GPT-4, as well as open-source models such as GPT-NeoX-20B and LLaMa-13B. Results show that our zero-shot approach exhibits state-of-the-art performance in distinguishing between human and GPT-generated text on four English and one German dataset, outperforming OpenAI’s own classifier, which is trained on millions of text. Additionally, our methods provide reasonable explanations and evidence to support our claim, which is a unique feature of explainable detection. Our method is also robust under the revised text attack and can additionally solve model sourcing. Codes are available at https://github.com/Xianjun-Yang/DNA-GPT.
PDF

点此查看论文截图

An Investigation of Evaluation Metrics for Automated Medical Note Generation

Authors:Asma Ben Abacha, Wen-wai Yim, George Michalopoulos, Thomas Lin

Recent studies on automatic note generation have shown that doctors can save significant amounts of time when using automatic clinical note generation (Knoll et al., 2022). Summarization models have been used for this task to generate clinical notes as summaries of doctor-patient conversations (Krishna et al., 2021; Cai et al., 2022). However, assessing which model would best serve clinicians in their daily practice is still a challenging task due to the large set of possible correct summaries, and the potential limitations of automatic evaluation metrics. In this paper, we study evaluation methods and metrics for the automatic generation of clinical notes from medical conversations. In particular, we propose new task-specific metrics and we compare them to SOTA evaluation metrics in text summarization and generation, including: (i) knowledge-graph embedding-based metrics, (ii) customized model-based metrics, (iii) domain-adapted/fine-tuned metrics, and (iv) ensemble metrics. To study the correlation between the automatic metrics and manual judgments, we evaluate automatic notes/summaries by comparing the system and reference facts and computing the factual correctness, and the hallucination and omission rates for critical medical facts. This study relied on seven datasets manually annotated by domain experts. Our experiments show that automatic evaluation metrics can have substantially different behaviors on different types of clinical notes datasets. However, the results highlight one stable subset of metrics as the most correlated with human judgments with a relevant aggregation of different evaluation criteria.
PDF Accepted to ACL Findings 2023

点此查看论文截图

Source Free Domain Adaptation of a DNN for SSVEP-based Brain-Computer Interfaces

Authors:Osman Berke Guney, Deniz Kucukahmetler, Huseyin Ozkan

This paper presents a source free domain adaptation method for steady-state visually evoked potential (SSVEP) based brain-computer interface (BCI) spellers. SSVEP-based BCI spellers help individuals experiencing speech difficulties, enabling them to communicate at a fast rate. However, achieving a high information transfer rate (ITR) in the current methods requires an extensive calibration period before using the system, leading to discomfort for new users. We address this issue by proposing a method that adapts the deep neural network (DNN) pre-trained on data from source domains (participants of previous experiments conducted for labeled data collection), using only the unlabeled data of the new user (target domain). This adaptation is achieved by minimizing our proposed custom loss function composed of self-adaptation and local-regularity loss terms. The self-adaptation term uses the pseudo-label strategy, while the novel local-regularity term exploits the data structure and forces the DNN to assign the same labels to adjacent instances. Our method achieves striking 201.15 bits/min and 145.02 bits/min ITRs on the benchmark and BETA datasets, respectively, and outperforms the state-of-the-art alternative techniques. Our approach alleviates user discomfort and shows excellent identification performance, so it would potentially contribute to the broader application of SSVEP-based BCI systems in everyday life.
PDF 11 pages (including one page appendix), 5 figures

点此查看论文截图

Plug-and-Play Knowledge Injection for Pre-trained Language Models

Authors:Zhengyan Zhang, Zhiyuan Zeng, Yankai Lin, Huadong Wang, Deming Ye, Chaojun Xiao, Xu Han, Zhiyuan Liu, Peng Li, Maosong Sun, Jie Zhou

Injecting external knowledge can improve the performance of pre-trained language models (PLMs) on various downstream NLP tasks. However, massive retraining is required to deploy new knowledge injection methods or knowledge bases for downstream tasks. In this work, we are the first to study how to improve the flexibility and efficiency of knowledge injection by reusing existing downstream models. To this end, we explore a new paradigm plug-and-play knowledge injection, where knowledge bases are injected into frozen existing downstream models by a knowledge plugin. Correspondingly, we propose a plug-and-play injection method map-tuning, which trains a mapping of knowledge embeddings to enrich model inputs with mapped embeddings while keeping model parameters frozen. Experimental results on three knowledge-driven NLP tasks show that existing injection methods are not suitable for the new paradigm, while map-tuning effectively improves the performance of downstream models. Moreover, we show that a frozen downstream model can be well adapted to different domains with different mapping networks of domain knowledge. Our code and models are available at https://github.com/THUNLP/Knowledge-Plugin.
PDF ACL 2023

点此查看论文截图

Breaking Language Barriers with a LEAP: Learning Strategies for Polyglot LLMs

Authors:Akshay Nambi, Vaibhav Balloli, Mercy Ranjit, Tanuja Ganu, Kabir Ahuja, Sunayana Sitaram, Kalika Bali

Large language models (LLMs) are at the forefront of transforming numerous domains globally. However, their inclusivity and effectiveness remain limited for non-Latin scripts and low-resource languages. This paper tackles the imperative challenge of enhancing the multilingual performance of LLMs, specifically focusing on Generative models. Through systematic investigation and evaluation of diverse languages using popular question-answering (QA) datasets, we present novel techniques that unlock the true potential of LLMs in a polyglot landscape. Our approach encompasses three key strategies that yield remarkable improvements in multilingual proficiency. First, by meticulously optimizing prompts tailored for polyglot LLMs, we unlock their latent capabilities, resulting in substantial performance boosts across languages. Second, we introduce a new hybrid approach that synergizes GPT generation with multilingual embeddings and achieves significant multilingual performance improvement on critical tasks like QA and retrieval. Finally, to further propel the performance of polyglot LLMs, we introduce a novel learning algorithm that dynamically selects the optimal prompt strategy, LLM model, and embeddings per query. This dynamic adaptation maximizes the efficacy of LLMs across languages, outperforming best static and random strategies. Our results show substantial advancements in multilingual understanding and generation across a diverse range of languages.
PDF

点此查看论文截图

Deeply Coupled Cross-Modal Prompt Learning

Authors:Xuejing Liu, Wei Tang, Jinghui Lu, Rui Zhao, Zhaojun Guo, Fei Tan

Recent advancements in multimodal foundation models (e.g., CLIP) have excelled in zero-shot generalization. Prompt tuning involved in the knowledge transfer from foundation models to downstream tasks has gained significant attention recently. Existing prompt-tuning methods in cross-modal learning, however, either solely focus on language branch, or learn vision-language interaction in a shallow mechanism. In this context, we propose a Deeply coupled Cross-modal Prompt learning (DCP) method based on CLIP. DCP flexibly accommodates the interplay between vision and language with a Cross-Modal Prompt Attention (CMPA) mechanism, which enables the mutual exchange of respective representation through a well-connected multi-head attention module progressively and strongly. We then conduct comprehensive few-shot learning experiments on 11 image classification datasets and analyze the robustness to domain shift as well. Thorough experimental analysis evidently demonstrates the superb few-shot generalization and compelling domain adaption capacity of a well-executed DCP. The code can be found at \href{https://github.com/GingL/CMPA}{https://github.com/GingL/CMPA}.
PDF Accepted by ACL 2023 findings

点此查看论文截图

Can We Trust Explainable AI Methods on ASR? An Evaluation on Phoneme Recognition

Authors:Xiaoliang Wu, Peter Bell, Ajitha Rajan

Explainable AI (XAI) techniques have been widely used to help explain and understand the output of deep learning models in fields such as image classification and Natural Language Processing. Interest in using XAI techniques to explain deep learning-based automatic speech recognition (ASR) is emerging. but there is not enough evidence on whether these explanations can be trusted. To address this, we adapt a state-of-the-art XAI technique from the image classification domain, Local Interpretable Model-Agnostic Explanations (LIME), to a model trained for a TIMIT-based phoneme recognition task. This simple task provides a controlled setting for evaluation while also providing expert annotated ground truth to assess the quality of explanations. We find a variant of LIME based on time partitioned audio segments, that we propose in this paper, produces the most reliable explanations, containing the ground truth 96% of the time in its top three audio segments.
PDF

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录