2023-05-30 更新
Contrast, Attend and Diffuse to Decode High-Resolution Images from Brain Activities
Authors:Jingyuan Sun, Mingxiao Li, Zijiao Chen, Yunhao Zhang, Shaonan Wang, Marie-Francine Moens
Decoding visual stimuli from neural responses recorded by functional Magnetic Resonance Imaging (fMRI) presents an intriguing intersection between cognitive neuroscience and machine learning, promising advancements in understanding human visual perception and building non-invasive brain-machine interfaces. However, the task is challenging due to the noisy nature of fMRI signals and the intricate pattern of brain visual representations. To mitigate these challenges, we introduce a two-phase fMRI representation learning framework. The first phase pre-trains an fMRI feature learner with a proposed Double-contrastive Mask Auto-encoder to learn denoised representations. The second phase tunes the feature learner to attend to neural activation patterns most informative for visual reconstruction with guidance from an image auto-encoder. The optimized fMRI feature learner then conditions a latent diffusion model to reconstruct image stimuli from brain activities. Experimental results demonstrate our model’s superiority in generating high-resolution and semantically accurate images, substantially exceeding previous state-of-the-art methods by 39.34% in the 50-way-top-1 semantic classification accuracy. Our research invites further exploration of the decoding task’s potential and contributes to the development of non-invasive brain-machine interfaces.
PDF 17 pages, 6 figures, conference
点此查看论文截图
COMCAT: Towards Efficient Compression and Customization of Attention-Based Vision Models
Authors:Jinqi Xiao, Miao Yin, Yu Gong, Xiao Zang, Jian Ren, Bo Yuan
Attention-based vision models, such as Vision Transformer (ViT) and its variants, have shown promising performance in various computer vision tasks. However, these emerging architectures suffer from large model sizes and high computational costs, calling for efficient model compression solutions. To date, pruning ViTs has been well studied, while other compression strategies that have been widely applied in CNN compression, e.g., model factorization, is little explored in the context of ViT compression. This paper explores an efficient method for compressing vision transformers to enrich the toolset for obtaining compact attention-based vision models. Based on the new insight on the multi-head attention layer, we develop a highly efficient ViT compression solution, which outperforms the state-of-the-art pruning methods. For compressing DeiT-small and DeiT-base models on ImageNet, our proposed approach can achieve 0.45% and 0.76% higher top-1 accuracy even with fewer parameters. Our finding can also be applied to improve the customization efficiency of text-to-image diffusion models, with much faster training (up to $2.6\times$ speedup) and lower extra storage cost (up to $1927.5\times$ reduction) than the existing works.
PDF ICML 2023 Poster
点此查看论文截图
MADiff: Offline Multi-agent Learning with Diffusion Models
Authors:Zhengbang Zhu, Minghuan Liu, Liyuan Mao, Bingyi Kang, Minkai Xu, Yong Yu, Stefano Ermon, Weinan Zhang
Diffusion model (DM), as a powerful generative model, recently achieved huge success in various scenarios including offline reinforcement learning, where the policy learns to conduct planning by generating trajectory in the online evaluation. However, despite the effectiveness shown for single-agent learning, it remains unclear how DMs can operate in multi-agent problems, where agents can hardly complete teamwork without good coordination by independently modeling each agent’s trajectories. In this paper, we propose MADiff, a novel generative multi-agent learning framework to tackle this problem. MADiff is realized with an attention-based diffusion model to model the complex coordination among behaviors of multiple diffusion agents. To the best of our knowledge, MADiff is the first diffusion-based multi-agent offline RL framework, which behaves as both a decentralized policy and a centralized controller, which includes opponent modeling and can be used for multi-agent trajectory prediction. MADiff takes advantage of the powerful generative ability of diffusion while well-suited in modeling complex multi-agent interactions. Our experiments show the superior performance of MADiff compared to baseline algorithms in a range of multi-agent learning tasks.
PDF 17 pages, 7 figures, 4 tables
点此查看论文截图
Towards Consistent Video Editing with Text-to-Image Diffusion Models
Authors:Zicheng Zhang, Bonan Li, Xuecheng Nie, Congying Han, Tiande Guo, Luoqi Liu
Existing works have advanced Text-to-Image (TTI) diffusion models for video editing in a one-shot learning manner. Despite their low requirements of data and computation, these methods might produce results of unsatisfied consistency with text prompt as well as temporal sequence, limiting their applications in the real world. In this paper, we propose to address the above issues with a novel EI$^2$ model towards \textbf{E}nhancing v\textbf{I}deo \textbf{E}diting cons\textbf{I}stency of TTI-based frameworks. Specifically, we analyze and find that the inconsistent problem is caused by newly added modules into TTI models for learning temporal information. These modules lead to covariate shift in the feature space, which harms the editing capability. Thus, we design EI$^2$ to tackle the above drawbacks with two classical modules: Shift-restricted Temporal Attention Module (STAM) and Fine-coarse Frame Attention Module (FFAM). First, through theoretical analysis, we demonstrate that covariate shift is highly related to Layer Normalization, thus STAM employs a \textit{Instance Centering} layer replacing it to preserve the distribution of temporal features. In addition, {STAM} employs an attention layer with normalized mapping to transform temporal features while constraining the variance shift. As the second part, we incorporate {STAM} with a novel {FFAM}, which efficiently leverages fine-coarse spatial information of overall frames to further enhance temporal consistency. Extensive experiments demonstrate the superiority of the proposed EI$^2$ model for text-driven video editing.
PDF
点此查看论文截图
A Diffusion Model for Event Skeleton Generation
Authors:Fangqi Zhu, Lin Zhang, Jun Gao, Bing Qin, Ruifeng Xu, Haiqin Yang
Event skeleton generation, aiming to induce an event schema skeleton graph with abstracted event nodes and their temporal relations from a set of event instance graphs, is a critical step in the temporal complex event schema induction task. Existing methods effectively address this task from a graph generation perspective but suffer from noise-sensitive and error accumulation, e.g., the inability to correct errors while generating schema. We, therefore, propose a novel Diffusion Event Graph Model~(DEGM) to address these issues. Our DEGM is the first workable diffusion model for event skeleton generation, where the embedding and rounding techniques with a custom edge-based loss are introduced to transform a discrete event graph into learnable latent representation. Furthermore, we propose a denoising training process to maintain the model’s robustness. Consequently, DEGM derives the final schema, where error correction is guaranteed by iteratively refining the latent representation during the schema generation process. Experimental results on three IED bombing datasets demonstrate that our DEGM achieves better results than other state-of-the-art baselines. Our code and data are available at https://github.com/zhufq00/EventSkeletonGeneration.
PDF
点此查看论文截图
Text-to-image Editing by Image Information Removal
Authors:Zhongping Zhang, Jian Zheng, Jacob Zhiyuan Fang, Bryan A. Plummer
Diffusion models have demonstrated impressive performance in text-guided image generation. To leverage the knowledge of text-guided image generation models in image editing, current approaches either fine-tune the pretrained models using the input image (e.g., Imagic) or incorporate structure information as additional constraints into the pretrained models (e.g., ControlNet). However, fine-tuning large-scale diffusion models on a single image can lead to severe overfitting issues and lengthy inference time. The information leakage from pretrained models makes it challenging to preserve the text-irrelevant content of the input image while generating new features guided by language descriptions. On the other hand, methods that incorporate structural guidance (e.g., edge maps, semantic maps, keypoints) as additional constraints face limitations in preserving other attributes of the original image, such as colors or textures. A straightforward way to incorporate the original image is to directly use it as an additional control. However, since image editing methods are typically trained on the image reconstruction task, the incorporation can lead to the identical mapping issue, where the model learns to output an image identical to the input, resulting in limited editing capabilities. To address these challenges, we propose a text-to-image editing model with Image Information Removal module (IIR) to selectively erase color-related and texture-related information from the original image, allowing us to better preserve the text-irrelevant content and avoid the identical mapping issue. We evaluate our model on three benchmark datasets: CUB, Outdoor Scenes, and COCO. Our approach achieves the best editability-fidelity trade-off, and our edited images are approximately 35% more preferred by annotators than the prior-arts on COCO.
PDF
点此查看论文截图
CamoDiffusion: Camouflaged Object Detection via Conditional Diffusion Models
Authors:Zhongxi Chen, Ke Sun, Xianming Lin, Rongrong Ji
Camouflaged Object Detection (COD) is a challenging task in computer vision due to the high similarity between camouflaged objects and their surroundings. Existing COD methods primarily employ semantic segmentation, which suffers from overconfident incorrect predictions. In this paper, we propose a new paradigm that treats COD as a conditional mask-generation task leveraging diffusion models. Our method, dubbed CamoDiffusion, employs the denoising process of diffusion models to iteratively reduce the noise of the mask. Due to the stochastic sampling process of diffusion, our model is capable of sampling multiple possible predictions from the mask distribution, avoiding the problem of overconfident point estimation. Moreover, we develop specialized learning strategies that include an innovative ensemble approach for generating robust predictions and tailored forward diffusion methods for efficient training, specifically for the COD task. Extensive experiments on three COD datasets attest the superior performance of our model compared to existing state-of-the-art methods, particularly on the most challenging COD10K dataset, where our approach achieves 0.019 in terms of MAE.
PDF
点此查看论文截图
Conditional Score Guidance for Text-Driven Image-to-Image Translation
Authors:Hyunsoo Lee, Minsoo Kang, Bohyung Han
We present a novel algorithm for text-driven image-to-image translation based on a pretrained text-to-image diffusion model. Our method aims to generate a target image by selectively editing the regions of interest in a source image, defined by a modifying text, while preserving the remaining parts. In contrast to existing techniques that solely rely on a target prompt, we introduce a new score function, which considers both a source prompt and a source image, tailored to address specific translation tasks. To this end, we derive the conditional score function in a principled manner, decomposing it into a standard score and a guiding term for target image generation. For the gradient computation, we adopt a Gaussian distribution of the posterior distribution, estimating its mean and variance without requiring additional training. In addition, to enhance the conditional score guidance, we incorporate a simple yet effective mixup method. This method combines two cross-attention maps derived from the source and target latents, promoting the generation of the target image by a desirable fusion of the original parts in the source image and the edited regions aligned with the target prompt. Through comprehensive experiments, we demonstrate that our approach achieves outstanding image-to-image translation performance on various tasks.
PDF
点此查看论文截图
InstructEdit: Improving Automatic Masks for Diffusion-based Image Editing With User Instructions
Authors:Qian Wang, Biao Zhang, Michael Birsak, Peter Wonka
Recent works have explored text-guided image editing using diffusion models and generated edited images based on text prompts. However, the models struggle to accurately locate the regions to be edited and faithfully perform precise edits. In this work, we propose a framework termed InstructEdit that can do fine-grained editing based on user instructions. Our proposed framework has three components: language processor, segmenter, and image editor. The first component, the language processor, processes the user instruction using a large language model. The goal of this processing is to parse the user instruction and output prompts for the segmenter and captions for the image editor. We adopt ChatGPT and optionally BLIP2 for this step. The second component, the segmenter, uses the segmentation prompt provided by the language processor. We employ a state-of-the-art segmentation framework Grounded Segment Anything to automatically generate a high-quality mask based on the segmentation prompt. The third component, the image editor, uses the captions from the language processor and the masks from the segmenter to compute the edited image. We adopt Stable Diffusion and the mask-guided generation from DiffEdit for this purpose. Experiments show that our method outperforms previous editing methods in fine-grained editing applications where the input image contains a complex object or multiple objects. We improve the mask quality over DiffEdit and thus improve the quality of edited images. We also show that our framework can accept multiple forms of user instructions as input. We provide the code at https://github.com/QianWangX/InstructEdit.
PDF Project page: https://qianwangx.github.io/InstructEdit/
点此查看论文截图
Text-Only Image Captioning with Multi-Context Data Generation
Authors:Feipeng Ma, Yizhou Zhou, Fengyun Rao, Yueyi Zhang, Xiaoyan Sun
Text-only Image Captioning (TIC) is an approach that aims to construct a model solely based on text that can accurately describe images. Recently, diffusion models have demonstrated remarkable capabilities in generating high-quality images that are semantically coherent with given texts. This presents an opportunity to generate synthetic training images for TIC. However, we have identified a challenge that the images generated from simple descriptions typically exhibit a single perspective with one or limited contexts, which is not aligned with the complexity of real-world scenes in the image domain. In this paper, we propose a novel framework that addresses this issue by introducing multi-context data generation. Starting with an initial text corpus, our framework employs a large language model to select multiple sentences that describe the same scene from various perspectives. These sentences are then summarized into a single sentence with multiple contexts. We generate simple images using the straightforward sentences and complex images using the summarized sentences through diffusion models. Finally, we train the model exclusively using the synthetic image-text pairs obtained from this process. Experimental results demonstrate that our proposed framework effectively tackles the central challenge we have identified, achieving the state-of-the-art performance on popular datasets such as MSCOCO, Flickr30k, and SS1M.
PDF
点此查看论文截图
GlyphControl: Glyph Conditional Control for Visual Text Generation
Authors:Yukang Yang, Dongnan Gui, Yuhui Yuan, Haisong Ding, Han Hu, Kai Chen
Recently, there has been a growing interest in developing diffusion-based text-to-image generative models capable of generating coherent and well-formed visual text. In this paper, we propose a novel and efficient approach called GlyphControl to address this task. Unlike existing methods that rely on character-aware text encoders like ByT5 and require retraining of text-to-image models, our approach leverages additional glyph conditional information to enhance the performance of the off-the-shelf Stable-Diffusion model in generating accurate visual text. By incorporating glyph instructions, users can customize the content, location, and size of the generated text according to their specific requirements. To facilitate further research in visual text generation, we construct a training benchmark dataset called LAION-Glyph. We evaluate the effectiveness of our approach by measuring OCR-based metrics and CLIP scores of the generated visual text. Our empirical evaluations demonstrate that GlyphControl outperforms the recent DeepFloyd IF approach in terms of OCR accuracy and CLIP scores, highlighting the efficacy of our method.
PDF Technical report. The codes will be released at https://github.com/AIGText/GlyphControl-release
点此查看论文截图
Gen-L-Video: Multi-Text to Long Video Generation via Temporal Co-Denoising
Authors:Fu-Yun Wang, Wenshuo Chen, Guanglu Song, Han-Jia Ye, Yu Liu, Hongsheng Li
Leveraging large-scale image-text datasets and advancements in diffusion models, text-driven generative models have made remarkable strides in the field of image generation and editing. This study explores the potential of extending the text-driven ability to the generation and editing of multi-text conditioned long videos. Current methodologies for video generation and editing, while innovative, are often confined to extremely short videos (typically less than 24 frames) and are limited to a single text condition. These constraints significantly limit their applications given that real-world videos usually consist of multiple segments, each bearing different semantic information. To address this challenge, we introduce a novel paradigm dubbed as Gen-L-Video, capable of extending off-the-shelf short video diffusion models for generating and editing videos comprising hundreds of frames with diverse semantic segments without introducing additional training, all while preserving content consistency. We have implemented three mainstream text-driven video generation and editing methodologies and extended them to accommodate longer videos imbued with a variety of semantic segments with our proposed paradigm. Our experimental outcomes reveal that our approach significantly broadens the generative and editing capabilities of video diffusion models, offering new possibilities for future research and applications. The code is available at https://github.com/G-U-N/Gen-L-Video.
PDF The code is available at https://github.com/G-U-N/Gen-L-Video
点此查看论文截图
Reconstructing the Mind’s Eye: fMRI-to-Image with Contrastive Learning and Diffusion Priors
Authors:Paul S. Scotti, Atmadeep Banerjee, Jimmie Goode, Stepan Shabalin, Alex Nguyen, Ethan Cohen, Aidan J. Dempster, Nathalie Verlinde, Elad Yundler, David Weisberg, Kenneth A. Norman, Tanishq Mathew Abraham
We present MindEye, a novel fMRI-to-image approach to retrieve and reconstruct viewed images from brain activity. Our model comprises two parallel submodules that are specialized for retrieval (using contrastive learning) and reconstruction (using a diffusion prior). MindEye can map fMRI brain activity to any high dimensional multimodal latent space, like CLIP image space, enabling image reconstruction using generative models that accept embeddings from this latent space. We comprehensively compare our approach with other existing methods, using both qualitative side-by-side comparisons and quantitative evaluations, and show that MindEye achieves state-of-the-art performance in both reconstruction and retrieval tasks. In particular, MindEye can retrieve the exact original image even among highly similar candidates indicating that its brain embeddings retain fine-grained image-specific information. This allows us to accurately retrieve images even from large-scale databases like LAION-5B. We demonstrate through ablations that MindEye’s performance improvements over previous methods result from specialized submodules for retrieval and reconstruction, improved training techniques, and training models with orders of magnitude more parameters. Furthermore, we show that MindEye can better preserve low-level image features in the reconstructions by using img2img, with outputs from a separate autoencoder. All code is available on GitHub.
PDF Project Page at https://medarc-ai.github.io/mindeye-website/. Code at https://github.com/MedARC-AI/fMRI-reconstruction-NSD/
点此查看论文截图
Photoswap: Personalized Subject Swapping in Images
Authors:Jing Gu, Yilin Wang, Nanxuan Zhao, Tsu-Jui Fu, Wei Xiong, Qing Liu, Zhifei Zhang, He Zhang, Jianming Zhang, HyunJoon Jung, Xin Eric Wang
In an era where images and visual content dominate our digital landscape, the ability to manipulate and personalize these images has become a necessity. Envision seamlessly substituting a tabby cat lounging on a sunlit window sill in a photograph with your own playful puppy, all while preserving the original charm and composition of the image. We present Photoswap, a novel approach that enables this immersive image editing experience through personalized subject swapping in existing images. Photoswap first learns the visual concept of the subject from reference images and then swaps it into the target image using pre-trained diffusion models in a training-free manner. We establish that a well-conceptualized visual subject can be seamlessly transferred to any image with appropriate self-attention and cross-attention manipulation, maintaining the pose of the swapped subject and the overall coherence of the image. Comprehensive experiments underscore the efficacy and controllability of Photoswap in personalized subject swapping. Furthermore, Photoswap significantly outperforms baseline methods in human ratings across subject swapping, background preservation, and overall quality, revealing its vast application potential, from entertainment to professional editing.
PDF 14 pages
点此查看论文截图
RAPHAEL: Text-to-Image Generation via Large Mixture of Diffusion Paths
Authors:Zeyue Xue, Guanglu Song, Qiushan Guo, Boxiao Liu, Zhuofan Zong, Yu Liu, Ping Luo
Text-to-image generation has recently witnessed remarkable achievements. We introduce a text-conditional image diffusion model, termed RAPHAEL, to generate highly artistic images, which accurately portray the text prompts, encompassing multiple nouns, adjectives, and verbs. This is achieved by stacking tens of mixture-of-experts (MoEs) layers, i.e., space-MoE and time-MoE layers, enabling billions of diffusion paths (routes) from the network input to the output. Each path intuitively functions as a “painter” for depicting a particular textual concept onto a specified image region at a diffusion timestep. Comprehensive experiments reveal that RAPHAEL outperforms recent cutting-edge models, such as Stable Diffusion, ERNIE-ViLG 2.0, DeepFloyd, and DALL-E 2, in terms of both image quality and aesthetic appeal. Firstly, RAPHAEL exhibits superior performance in switching images across diverse styles, such as Japanese comics, realism, cyberpunk, and ink illustration. Secondly, a single model with three billion parameters, trained on 1,000 A100 GPUs for two months, achieves a state-of-the-art zero-shot FID score of 6.61 on the COCO dataset. Furthermore, RAPHAEL significantly surpasses its counterparts in human evaluation on the ViLG-300 benchmark. We believe that RAPHAEL holds the potential to propel the frontiers of image generation research in both academia and industry, paving the way for future breakthroughs in this rapidly evolving field. More details can be found on a project webpage: https://raphael-painter.github.io/.
PDF Technical Report