2023-05-26 更新

EMNS /Imz/ Corpus: An emotive single-speaker dataset for narrative storytelling in games, television and graphic novels

Authors:Kari Ali Noriy, Xiaosong Yang, Jian Jun Zhang

The increasing adoption of text-to-speech technologies has led to a growing demand for natural and emotive voices that adapt to a conversation’s context and emotional tone. The Emotive Narrative Storytelling (EMNS) corpus is a unique speech dataset created to enhance conversations’ expressiveness and emotive quality in interactive narrative-driven systems. The corpus consists of a 2.3-hour recording featuring a female speaker delivering labelled utterances. It encompasses eight acted emotional states, evenly distributed with a variance of 0.68%, along with expressiveness levels and natural language descriptions with word emphasis labels. The evaluation of audio samples from different datasets revealed that the EMNS corpus achieved the highest average scores in accurately conveying emotions and demonstrating expressiveness. It outperformed other datasets in conveying shared emotions and achieved comparable levels of genuineness. A classification task confirmed the accurate representation of intended emotions in the corpus, with participants recognising the recordings as genuine and expressive. Additionally, the availability of the dataset collection tool under the Apache 2.0 License simplifies remote speech data collection for researchers.
PDF Dataset download link: https://openslr.elda.org/136/


Mixture-of-Expert Conformer for Streaming Multilingual ASR

Authors:Ke Hu, Bo Li, Tara N. Sainath, Yu Zhang, Francoise Beaufays

End-to-end models with large capacity have significantly improved multilingual automatic speech recognition, but their computation cost poses challenges for on-device applications. We propose a streaming truly multilingual Conformer incorporating mixture-of-expert (MoE) layers that learn to only activate a subset of parameters in training and inference. The MoE layer consists of a softmax gate which chooses the best two experts among many in forward propagation. The proposed MoE layer offers efficient inference by activating a fixed number of parameters as the number of experts increases. We evaluate the proposed model on a set of 12 languages, and achieve an average 11.9% relative improvement in WER over the baseline. Compared to an adapter model using ground truth information, our MoE model achieves similar WER and activates similar number of parameters but without any language information. We further show around 3% relative WER improvement by multilingual shallow fusion.
PDF Accepted to Interspeech 2023


Comparative Study of Pre-Trained BERT Models for Code-Mixed Hindi-English Data

Authors:Aryan Patil, Varad Patwardhan, Abhishek Phaltankar, Gauri Takawane, Raviraj Joshi

The term “Code Mixed” refers to the use of more than one language in the same text. This phenomenon is predominantly observed on social media platforms, with an increasing amount of adaptation as time goes on. It is critical to detect foreign elements in a language and process them correctly, as a considerable number of individuals are using code-mixed languages that could not be comprehended by understanding one of those languages. In this work, we focus on low-resource Hindi-English code-mixed language and enhancing the performance of different code-mixed natural language processing tasks such as sentiment analysis, emotion recognition, and hate speech identification. We perform a comparative analysis of different Transformer-based language Models pre-trained using unsupervised approaches. We have included the code-mixed models like HingBERT, HingRoBERTa, HingRoBERTa-Mixed, mBERT, and non-code-mixed models like AlBERT, BERT, and RoBERTa for comparative analysis of code-mixed Hindi-English downstream tasks. We report state-of-the-art results on respective datasets using HingBERT-based models which are specifically pre-trained on real code-mixed text. Our HingBERT-based models provide significant improvements thus highlighting the poor performance of vanilla BERT models on code-mixed text.
PDF Accepted at IEEE 8th International Conference for Convergence in Technology


Improving Scheduled Sampling for Neural Transducer-based ASR

Authors:Takafumi Moriya, Takanori Ashihara, Hiroshi Sato, Kohei Matsuura, Tomohiro Tanaka, Ryo Masumura

The recurrent neural network-transducer (RNNT) is a promising approach for automatic speech recognition (ASR) with the introduction of a prediction network that autoregressively considers linguistic aspects. To train the autoregressive part, the ground-truth tokens are used as substitutions for the previous output token, which leads to insufficient robustness to incorrect past tokens; a recognition error in the decoding leads to further errors. Scheduled sampling (SS) is a technique to train autoregressive model robustly to past errors by randomly replacing some ground-truth tokens with actual outputs generated from a model. SS mitigates the gaps between training and decoding steps, known as exposure bias, and it is often used for attentional encoder-decoder training. However SS has not been fully examined for RNNT because of the difficulty in applying SS to RNNT due to the complicated RNNT output form. In this paper we propose SS approaches suited for RNNT. Our SS approaches sample the tokens generated from the distiribution of RNNT itself, i.e. internal language model or RNNT outputs. Experiments in three datasets confirm that RNNT trained with our SS approach achieves the best ASR performance. In particular, on a Japanese ASR task, our best system outperforms the previous state-of-the-art alternative.
PDF Accepted to ICASSP 2023


Acoustic-to-Articulatory Speech Inversion Features for Mispronunciation Detection of /r/ in Child Speech Sound Disorders

Authors:Nina R Benway, Yashish M Siriwardena, Jonathan L Preston, Elaine Hitchcock, Tara McAllister, Carol Espy-Wilson

Acoustic-to-articulatory speech inversion could enhance automated clinical mispronunciation detection to provide detailed articulatory feedback unattainable by formant-based mispronunciation detection algorithms; however, it is unclear the extent to which a speech inversion system trained on adult speech performs in the context of (1) child and (2) clinical speech. In the absence of an articulatory dataset in children with rhotic speech sound disorders, we show that classifiers trained on tract variables from acoustic-to-articulatory speech inversion meet or exceed the performance of state-of-the-art features when predicting clinician judgment of rhoticity. Index Terms: rhotic, speech sound disorder, mispronunciation detection
PDF *denotes equal contribution. To appear in Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH 2023


End-to-End Simultaneous Speech Translation with Differentiable Segmentation

Authors:Shaolei Zhang, Yang Feng

End-to-end simultaneous speech translation (SimulST) outputs translation while receiving the streaming speech inputs (a.k.a. streaming speech translation), and hence needs to segment the speech inputs and then translate based on the current received speech. However, segmenting the speech inputs at unfavorable moments can disrupt the acoustic integrity and adversely affect the performance of the translation model. Therefore, learning to segment the speech inputs at those moments that are beneficial for the translation model to produce high-quality translation is the key to SimulST. Existing SimulST methods, either using the fixed-length segmentation or external segmentation model, always separate segmentation from the underlying translation model, where the gap results in segmentation outcomes that are not necessarily beneficial for the translation process. In this paper, we propose Differentiable Segmentation (DiSeg) for SimulST to directly learn segmentation from the underlying translation model. DiSeg turns hard segmentation into differentiable through the proposed expectation training, enabling it to be jointly trained with the translation model and thereby learn translation-beneficial segmentation. Experimental results demonstrate that DiSeg achieves state-of-the-art performance and exhibits superior segmentation capability.
PDF Accepted at ACL 2023 findings


Persistent Laplacian-enhanced Algorithm for Scarcely Labeled Data Classification

Authors:Gokul Bhusal, Ekaterina Merkurjev, Guo-Wei Wei

The success of many machine learning (ML) methods depends crucially on having large amounts of labeled data. However, obtaining enough labeled data can be expensive, time-consuming, and subject to ethical constraints for many applications. One approach that has shown tremendous value in addressing this challenge is semi-supervised learning (SSL); this technique utilizes both labeled and unlabeled data during training, often with much less labeled data than unlabeled data, which is often relatively easy and inexpensive to obtain. In fact, SSL methods are particularly useful in applications where the cost of labeling data is especially expensive, such as medical analysis, natural language processing (NLP), or speech recognition. A subset of SSL methods that have achieved great success in various domains involves algorithms that integrate graph-based techniques. These procedures are popular due to the vast amount of information provided by the graphical framework and the versatility of their applications. In this work, we propose an algebraic topology-based semi-supervised method called persistent Laplacian-enhanced graph MBO (PL-MBO) by integrating persistent spectral graph theory with the classical Merriman-Bence- Osher (MBO) scheme. Specifically, we use a filtration procedure to generate a sequence of chain complexes and associated families of simplicial complexes, from which we construct a family of persistent Laplacians. Overall, it is a very efficient procedure that requires much less labeled data to perform well compared to many ML techniques, and it can be adapted for both small and large datasets. We evaluate the performance of the proposed method on data classification, and the results indicate that the proposed technique outperforms other existing semi-supervised algorithms.


Weakly-Supervised Speech Pre-training: A Case Study on Target Speech Recognition

Authors:Wangyou Zhang, Yanmin Qian

Self-supervised learning (SSL) based speech pre-training has attracted much attention for its capability of extracting rich representations learned from massive unlabeled data. On the other hand, the use of weakly-supervised data is less explored for speech pre-training. To fill this gap, we propose a weakly-supervised speech pre-training method based on speaker-aware speech data. It adopts a similar training procedure to the widely-used masked speech prediction based SSL framework, while incorporating additional target-speaker enrollment information as an auxiliary input. In this way, the learned representation is steered towards the target speaker even in the presence of highly overlapping interference, allowing potential applications to tasks such as target speech recognition. Our experiments on Libri2Mix and WSJ0-2mix datasets show that the proposed model achieves significantly better ASR performance compared to WavLM, the state-of-the-art SSL model with denoising capability.
PDF Accepted by Interspeech; 5 pages, 1 figure, 3 tables


文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !