2023-05-26 更新
PromptNER: Prompting For Named Entity Recognition
Authors:Dhananjay Ashok, Zachary C. Lipton
In a surprising turn, Large Language Models (LLMs) together with a growing arsenal of prompt-based heuristics now offer powerful off-the-shelf approaches providing few-shot solutions to myriad classic NLP problems. However, despite promising early results, these LLM-based few-shot methods remain far from the state of the art in Named Entity Recognition (NER), where prevailing methods include learning representations via end-to-end structural understanding and fine-tuning on standard labeled corpora. In this paper, we introduce PromptNER, a new state-of-the-art algorithm for few-Shot and cross-domain NER. To adapt to any new NER task PromptNER requires a set of entity definitions in addition to the standard few-shot examples. Given a sentence, PromptNER prompts an LLM to produce a list of potential entities along with corresponding explanations justifying their compatibility with the provided entity type definitions. Remarkably, PromptNER achieves state-of-the-art performance on few-shot NER, achieving an 11% (absolute) improvement in F1 score on the ConLL dataset, and a 10% (absolute) improvement on the FewNERD dataset. PromptNER also moves the state of the art on Cross Domain NER, outperforming all prior methods (including those not limited to the few-shot setting), setting a new mark on all 5 CrossNER target domains, with an average F1 gain of 9%, despite using less than 2% of the available data.
PDF
点此查看论文截图
Generalized domain adaptation framework for parametric back-end in speaker recognition
Authors:Qiongqiong Wang, Koji Okabe, Kong Aik Lee, Takafumi Koshinaka
State-of-the-art speaker recognition systems comprise a speaker embedding front-end followed by a probabilistic linear discriminant analysis (PLDA) back-end. The effectiveness of these components relies on the availability of a large amount of labeled training data. In practice, it is common for domains (e.g., language, channel, demographic) in which a system is deployed to differ from that in which a system has been trained. To close the resulting gap, domain adaptation is often essential for PLDA models. Among two of its variants are Heavy-tailed PLDA (HT-PLDA) and Gaussian PLDA (G-PLDA). Though the former better fits real feature spaces than does the latter, its popularity has been severely limited by its computational complexity and, especially, by the difficulty, it presents in domain adaptation, which results from its non-Gaussian property. Various domain adaptation methods have been proposed for G-PLDA. This paper proposes a generalized framework for domain adaptation that can be applied to both of the above variants of PLDA for speaker recognition. It not only includes several existing supervised and unsupervised domain adaptation methods but also makes possible more flexible usage of available data in different domains. In particular, we introduce here two new techniques: (1) correlation-alignment in the model level, and (2) covariance regularization. To the best of our knowledge, this is the first proposed application of such techniques for domain adaptation w.r.t. HT-PLDA. The efficacy of the proposed techniques has been experimentally validated on NIST 2016, 2018, and 2019 Speaker Recognition Evaluation (SRE’16, SRE’18, and SRE’19) datasets.
PDF
点此查看论文截图
Meta Adaptive Task Sampling for Few-Domain Generalization
Authors:Zheyan Shen, Han Yu, Peng Cui, Jiashuo Liu, Xingxuan Zhang, Linjun Zhou, Furui Liu
To ensure the out-of-distribution (OOD) generalization performance, traditional domain generalization (DG) methods resort to training on data from multiple sources with different underlying distributions. And the success of those DG methods largely depends on the fact that there are diverse training distributions. However, it usually needs great efforts to obtain enough heterogeneous data due to the high expenses, privacy issues or the scarcity of data. Thus an interesting yet seldom investigated problem arises: how to improve the OOD generalization performance when the perceived heterogeneity is limited. In this paper, we instantiate a new framework called few-domain generalization (FDG), which aims to learn a generalizable model from very few domains of novel tasks with the knowledge acquired from previous learning experiences on base tasks. Moreover, we propose a Meta Adaptive Task Sampling (MATS) procedure to differentiate base tasks according to their semantic and domain-shift similarity to the novel task. Empirically, we show that the newly introduced FDG framework can substantially improve the OOD generalization performance on the novel task and further combining MATS with episodic training could outperform several state-of-the-art DG baselines on widely used benchmarks like PACS and DomainNet.
PDF
点此查看论文截图
Anomaly Detection with Conditioned Denoising Diffusion Models
Authors:Arian Mousakhan, Thomas Brox, Jawad Tayyub
Reconstruction-based methods have struggled to achieve competitive performance on anomaly detection. In this paper, we introduce Denoising Diffusion Anomaly Detection (DDAD). We propose a novel denoising process for image reconstruction conditioned on a target image. This results in a coherent restoration that closely resembles the target image. Subsequently, our anomaly detection framework leverages this conditioning where the target image is set as the input image to guide the denoising process, leading to defectless reconstruction while maintaining nominal patterns. We localise anomalies via a pixel-wise and feature-wise comparison of the input and reconstructed image. Finally, to enhance the effectiveness of feature comparison, we introduce a domain adaptation method that utilises generated examples from our conditioned denoising process to fine-tune the feature extractor. The veracity of the approach is demonstrated on various datasets including MVTec and VisA benchmarks, achieving state-of-the-art results of 99.5% and 99.3% image-level AUROC respectively.
PDF
点此查看论文截图
Robust Category-Level 3D Pose Estimation from Synthetic Data
Authors:Jiahao Yang, Wufei Ma, Angtian Wang, Xiaoding Yuan, Alan Yuille, Adam Kortylewski
Obtaining accurate 3D object poses is vital for numerous computer vision applications, such as 3D reconstruction and scene understanding. However, annotating real-world objects is time-consuming and challenging. While synthetically generated training data is a viable alternative, the domain shift between real and synthetic data is a significant challenge. In this work, we aim to narrow the performance gap between models trained on synthetic data and few real images and fully supervised models trained on large-scale data. We achieve this by approaching the problem from two perspectives: 1) We introduce SyntheticP3D, a new synthetic dataset for object pose estimation generated from CAD models and enhanced with a novel algorithm. 2) We propose a novel approach (CC3D) for training neural mesh models that perform pose estimation via inverse rendering. In particular, we exploit the spatial relationships between features on the mesh surface and a contrastive learning scheme to guide the domain adaptation process. Combined, these two approaches enable our models to perform competitively with state-of-the-art models using only 10% of the respective real training images, while outperforming the SOTA model by 10.4% with a threshold of pi/18 using only 50% of the real training data. Our trained model further demonstrates robust generalization to out-of-distribution scenarios despite being trained with minimal real data.
PDF
点此查看论文截图
Domain-Adaptive Full-Face Gaze Estimation via Novel-View-Synthesis and Feature Disentanglement
Authors:Jiawei Qin, Takuru Shimoyama, Xucong Zhang, Yusuke Sugano
Along with the recent development of deep neural networks, appearance-based gaze estimation has succeeded considerably when training and testing within the same domain. Compared to the within-domain task, the variance of different domains makes the cross-domain performance drop severely, preventing gaze estimation deployment in real-world applications. Among all the factors, ranges of head pose and gaze are believed to play a significant role in the final performance of gaze estimation, while collecting large ranges of data is expensive. This work proposes an effective model training pipeline consisting of a training data synthesis and a gaze estimation model for unsupervised domain adaptation. The proposed data synthesis leverages the single-image 3D reconstruction to expand the range of the head poses from the source domain without requiring a 3D facial shape dataset. To bridge the inevitable gap between synthetic and real images, we further propose an unsupervised domain adaptation method suitable for synthetic full-face data. We propose a disentangling autoencoder network to separate gaze-related features and introduce background augmentation consistency loss to utilize the characteristics of the synthetic source domain. Through comprehensive experiments, we show that the model only using monocular-reconstructed synthetic training data can perform comparably to real data with a large label range. Our proposed domain adaptation approach further improves the performance on multiple target domains. The code and data will be available at \url{https://github.com/ut-vision/AdaptiveGaze}.
PDF
点此查看论文截图
Persistent Laplacian-enhanced Algorithm for Scarcely Labeled Data Classification
Authors:Gokul Bhusal, Ekaterina Merkurjev, Guo-Wei Wei
The success of many machine learning (ML) methods depends crucially on having large amounts of labeled data. However, obtaining enough labeled data can be expensive, time-consuming, and subject to ethical constraints for many applications. One approach that has shown tremendous value in addressing this challenge is semi-supervised learning (SSL); this technique utilizes both labeled and unlabeled data during training, often with much less labeled data than unlabeled data, which is often relatively easy and inexpensive to obtain. In fact, SSL methods are particularly useful in applications where the cost of labeling data is especially expensive, such as medical analysis, natural language processing (NLP), or speech recognition. A subset of SSL methods that have achieved great success in various domains involves algorithms that integrate graph-based techniques. These procedures are popular due to the vast amount of information provided by the graphical framework and the versatility of their applications. In this work, we propose an algebraic topology-based semi-supervised method called persistent Laplacian-enhanced graph MBO (PL-MBO) by integrating persistent spectral graph theory with the classical Merriman-Bence- Osher (MBO) scheme. Specifically, we use a filtration procedure to generate a sequence of chain complexes and associated families of simplicial complexes, from which we construct a family of persistent Laplacians. Overall, it is a very efficient procedure that requires much less labeled data to perform well compared to many ML techniques, and it can be adapted for both small and large datasets. We evaluate the performance of the proposed method on data classification, and the results indicate that the proposed technique outperforms other existing semi-supervised algorithms.
PDF
点此查看论文截图
Uni-ControlNet: All-in-One Control to Text-to-Image Diffusion Models
Authors:Shihao Zhao, Dongdong Chen, Yen-Chun Chen, Jianmin Bao, Shaozhe Hao, Lu Yuan, Kwan-Yee K. Wong
Text-to-Image diffusion models have made tremendous progress over the past two years, enabling the generation of highly realistic images based on open-domain text descriptions. However, despite their success, text descriptions often struggle to adequately convey detailed controls, even when composed of long and complex texts. Moreover, recent studies have also shown that these models face challenges in understanding such complex texts and generating the corresponding images. Therefore, there is a growing need to enable more control modes beyond text description. In this paper, we introduce Uni-ControlNet, a novel approach that allows for the simultaneous utilization of different local controls (e.g., edge maps, depth map, segmentation masks) and global controls (e.g., CLIP image embeddings) in a flexible and composable manner within one model. Unlike existing methods, Uni-ControlNet only requires the fine-tuning of two additional adapters upon frozen pre-trained text-to-image diffusion models, eliminating the huge cost of training from scratch. Moreover, thanks to some dedicated adapter designs, Uni-ControlNet only necessitates a constant number (i.e., 2) of adapters, regardless of the number of local or global controls used. This not only reduces the fine-tuning costs and model size, making it more suitable for real-world deployment, but also facilitate composability of different conditions. Through both quantitative and qualitative comparisons, Uni-ControlNet demonstrates its superiority over existing methods in terms of controllability, generation quality and composability. Code is available at \url{https://github.com/ShihaoZhaoZSH/Uni-ControlNet}.
PDF Code is available at https://github.com/ShihaoZhaoZSH/Uni-ControlNet