2023-05-26 更新
Differentially Private Synthetic Data via Foundation Model APIs 1: Images
Authors:Zinan Lin, Sivakanth Gopi, Janardhan Kulkarni, Harsha Nori, Sergey Yekhanin
Generating differentially private (DP) synthetic data that closely resembles the original private data without leaking sensitive user information is a scalable way to mitigate privacy concerns in the current data-driven world. In contrast to current practices that train customized models for this task, we aim to generate DP Synthetic Data via APIs (DPSDA), where we treat foundation models as blackboxes and only utilize their inference APIs. Such API-based, training-free approaches are easier to deploy as exemplified by the recent surge in the number of API-based apps. These approaches can also leverage the power of large foundation models which are accessible via their inference APIs while the model weights are unreleased. However, this comes with greater challenges due to strictly more restrictive model access and the additional need to protect privacy from the API provider. In this paper, we present a new framework called Private Evolution (PE) to solve this problem and show its initial promise on synthetic images. Surprisingly, PE can match or even outperform state-of-the-art (SOTA) methods without any model training. For example, on CIFAR10 (with ImageNet as the public data), we achieve FID<=7.9 with privacy cost epsilon=0.67, significantly improving the previous SOTA from epsilon=32. We further demonstrate the promise of applying PE on large foundation models such as Stable Diffusion to tackle challenging private datasets with a small number of high-resolution images.
PDF 38 pages, 33 figures
点此查看论文截图
Knowledge Diffusion for Distillation
Authors:Tao Huang, Yuan Zhang, Mingkai Zheng, Shan You, Fei Wang, Chen Qian, Chang Xu
The representation gap between teacher and student is an emerging topic in knowledge distillation (KD). To reduce the gap and improve the performance, current methods often resort to complicated training schemes, loss functions, and feature alignments, which are task-specific and feature-specific. In this paper, we state that the essence of these methods is to discard the noisy information and distill the valuable information in the feature, and propose a novel KD method dubbed DiffKD, to explicitly denoise and match features using diffusion models. Our approach is based on the observation that student features typically contain more noises than teacher features due to the smaller capacity of student model. To address this, we propose to denoise student features using a diffusion model trained by teacher features. This allows us to perform better distillation between the refined clean feature and teacher feature. Additionally, we introduce a light-weight diffusion model with a linear autoencoder to reduce the computation cost and an adpative noise matching module to improve the denoising performance. Extensive experiments demonstrate that DiffKD is effective across various types of features and achieves state-of-the-art performance consistently on image classification, object detection, and semantic segmentation tasks. Code will be available at https://github.com/hunto/DiffKD.
PDF
点此查看论文截图
DDDM-VC: Decoupled Denoising Diffusion Models with Disentangled Representation and Prior Mixup for Verified Robust Voice Conversion
Authors:Ha-Yeong Choi, Sang-Hoon Lee, Seong-Whan Lee
Diffusion-based generative models have exhibited powerful generative performance in recent years. However, as many attributes exist in the data distribution and owing to several limitations of sharing the model parameters across all levels of the generation process, it remains challenging to control specific styles for each attribute. To address the above problem, this paper presents decoupled denoising diffusion models (DDDMs) with disentangled representations, which can control the style for each attribute in generative models. We apply DDDMs to voice conversion (VC) tasks to address the challenges of disentangling and controlling each speech attribute (e.g., linguistic information, intonation, and timbre). First, we use a self-supervised representation to disentangle the speech representation. Subsequently, the DDDMs are applied to resynthesize the speech from the disentangled representations for denoising with respect to each attribute. Moreover, we also propose the prior mixup for robust voice style transfer, which uses the converted representation of the mixed style as a prior distribution for the diffusion models. The experimental results reveal that our method outperforms publicly available VC models. Furthermore, we show that our method provides robust generative performance regardless of the model size. Audio samples are available https://hayeong0.github.io/DDDM-VC-demo/.
PDF 23 pages, 10 figures, 17 tables, under review
点此查看论文截图
PDE+: Enhancing Generalization via PDE with Adaptive Distributional Diffusion
Authors:Yige Yuan, Bingbing Xu, Bo Lin, Liang Hou, Fei Sun, Huawei Shen, Xueqi Cheng
The generalization of neural networks is a central challenge in machine learning, especially concerning the performance under distributions that differ from training ones. Current methods, mainly based on the data-driven paradigm such as data augmentation, adversarial training, and noise injection, may encounter limited generalization due to model non-smoothness. In this paper, we propose to investigate generalization from a Partial Differential Equation (PDE) perspective, aiming to enhance it directly through the underlying function of neural networks, rather than focusing on adjusting input data. Specifically, we first establish the connection between neural network generalization and the smoothness of the solution to a specific PDE, namely ``transport equation’’. Building upon this, we propose a general framework that introduces adaptive distributional diffusion into transport equation to enhance the smoothness of its solution, thereby improving generalization. In the context of neural networks, we put this theoretical framework into practice as PDE+ (\textbf{PDE} with \textbf{A}daptive \textbf{D}istributional \textbf{D}iffusion) which diffuses each sample into a distribution covering semantically similar inputs. This enables better coverage of potentially unobserved distributions in training, thus improving generalization beyond merely data-driven methods. The effectiveness of PDE+ is validated in extensive settings, including clean samples and various corruptions, demonstrating its superior performance compared to SOTA methods.
PDF
点此查看论文截图
Anomaly Detection with Conditioned Denoising Diffusion Models
Authors:Arian Mousakhan, Thomas Brox, Jawad Tayyub
Reconstruction-based methods have struggled to achieve competitive performance on anomaly detection. In this paper, we introduce Denoising Diffusion Anomaly Detection (DDAD). We propose a novel denoising process for image reconstruction conditioned on a target image. This results in a coherent restoration that closely resembles the target image. Subsequently, our anomaly detection framework leverages this conditioning where the target image is set as the input image to guide the denoising process, leading to defectless reconstruction while maintaining nominal patterns. We localise anomalies via a pixel-wise and feature-wise comparison of the input and reconstructed image. Finally, to enhance the effectiveness of feature comparison, we introduce a domain adaptation method that utilises generated examples from our conditioned denoising process to fine-tune the feature extractor. The veracity of the approach is demonstrated on various datasets including MVTec and VisA benchmarks, achieving state-of-the-art results of 99.5% and 99.3% image-level AUROC respectively.
PDF
点此查看论文截图
DiffCLIP: Leveraging Stable Diffusion for Language Grounded 3D Classification
Authors:Sitian Shen, Zilin Zhu, Linqian Fan, Harry Zhang, Xinxiao Wu
Large pre-trained models have had a significant impact on computer vision by enabling multi-modal learning, where the CLIP model has achieved impressive results in image classification, object detection, and semantic segmentation. However, the model’s performance on 3D point cloud processing tasks is limited due to the domain gap between depth maps from 3D projection and training images of CLIP. This paper proposes DiffCLIP, a new pre-training framework that incorporates stable diffusion with ControlNet to minimize the domain gap in the visual branch. Additionally, a style-prompt generation module is introduced for few-shot tasks in the textual branch. Extensive experiments on the ModelNet10, ModelNet40, and ScanObjectNN datasets show that DiffCLIP has strong abilities for 3D understanding. By using stable diffusion and style-prompt generation, DiffCLIP achieves an accuracy of 43.2\% for zero-shot classification on OBJ_BG of ScanObjectNN, which is state-of-the-art performance, and an accuracy of 80.6\% for zero-shot classification on ModelNet10, which is comparable to state-of-the-art performance.
PDF
点此查看论文截图
GenerateCT: Text-Guided 3D Chest CT Generation
Authors:Ibrahim Ethem Hamamci, Sezgin Er, Enis Simsar, Alperen Tezcan, Ayse Gulnihan Simsek, Furkan Almas, Sevval Nil Esirgun, Hadrien Reynaud, Sarthak Pati, Christian Bluethgen, Bjoern Menze
Generative modeling has experienced substantial progress in recent years, particularly in text-to-image and text-to-video synthesis. However, the medical field has not yet fully exploited the potential of large-scale foundational models for synthetic data generation. In this paper, we introduce GenerateCT, the first method for text-conditional computed tomography (CT) generation, addressing the limitations in 3D medical imaging research and making our entire framework open-source. GenerateCT consists of a pre-trained large language model, a transformer-based text-conditional 3D chest CT generation architecture, and a text-conditional spatial super-resolution diffusion model. We also propose CT-ViT, which efficiently compresses CT volumes while preserving auto-regressiveness in-depth, enabling the generation of 3D CT volumes with variable numbers of axial slices. Our experiments demonstrate that GenerateCT can produce realistic, high-resolution, and high-fidelity 3D chest CT volumes consistent with medical language text prompts. We further investigate the potential of GenerateCT by training a model using generated CT volumes for multi-abnormality classification of chest CT volumes. Our contributions provide a valuable foundation for future research in text-conditional 3D medical image generation and have the potential to accelerate advancements in medical imaging research. Our code, pre-trained models, and generated data are available at https://github.com/ibrahimethemhamamci/GenerateCT.
PDF
点此查看论文截图
ProlificDreamer: High-Fidelity and Diverse Text-to-3D Generation with Variational Score Distillation
Authors:Zhengyi Wang, Cheng Lu, Yikai Wang, Fan Bao, Chongxuan Li, Hang Su, Jun Zhu
Score distillation sampling (SDS) has shown great promise in text-to-3D generation by distilling pretrained large-scale text-to-image diffusion models, but suffers from over-saturation, over-smoothing, and low-diversity problems. In this work, we propose to model the 3D parameter as a random variable instead of a constant as in SDS and present variational score distillation (VSD), a principled particle-based variational framework to explain and address the aforementioned issues in text-to-3D generation. We show that SDS is a special case of VSD and leads to poor samples with both small and large CFG weights. In comparison, VSD works well with various CFG weights as ancestral sampling from diffusion models and simultaneously improves the diversity and sample quality with a common CFG weight (i.e., $7.5$). We further present various improvements in the design space for text-to-3D such as distillation time schedule and density initialization, which are orthogonal to the distillation algorithm yet not well explored. Our overall approach, dubbed ProlificDreamer, can generate high rendering resolution (i.e., $512\times512$) and high-fidelity NeRF with rich structure and complex effects (e.g., smoke and drops). Further, initialized from NeRF, meshes fine-tuned by VSD are meticulously detailed and photo-realistic. Project page: https://ml.cs.tsinghua.edu.cn/prolificdreamer/
PDF Project page: https://ml.cs.tsinghua.edu.cn/prolificdreamer/
点此查看论文截图
Prompt-Free Diffusion: Taking “Text” out of Text-to-Image Diffusion Models
Authors:Xingqian Xu, Jiayi Guo, Zhangyang Wang, Gao Huang, Irfan Essa, Humphrey Shi
Text-to-image (T2I) research has grown explosively in the past year, owing to the large-scale pre-trained diffusion models and many emerging personalization and editing approaches. Yet, one pain point persists: the text prompt engineering, and searching high-quality text prompts for customized results is more art than science. Moreover, as commonly argued: “an image is worth a thousand words” - the attempt to describe a desired image with texts often ends up being ambiguous and cannot comprehensively cover delicate visual details, hence necessitating more additional controls from the visual domain. In this paper, we take a bold step forward: taking “Text” out of a pre-trained T2I diffusion model, to reduce the burdensome prompt engineering efforts for users. Our proposed framework, Prompt-Free Diffusion, relies on only visual inputs to generate new images: it takes a reference image as “context”, an optional image structural conditioning, and an initial noise, with absolutely no text prompt. The core architecture behind the scene is Semantic Context Encoder (SeeCoder), substituting the commonly used CLIP-based or LLM-based text encoder. The reusability of SeeCoder also makes it a convenient drop-in component: one can also pre-train a SeeCoder in one T2I model and reuse it for another. Through extensive experiments, Prompt-Free Diffusion is experimentally found to (i) outperform prior exemplar-based image synthesis approaches; (ii) perform on par with state-of-the-art T2I models using prompts following the best practice; and (iii) be naturally extensible to other downstream applications such as anime figure generation and virtual try-on, with promising quality. Our code and models are open-sourced at https://github.com/SHI-Labs/Prompt-Free-Diffusion.
PDF
点此查看论文截图
UDPM: Upsampling Diffusion Probabilistic Models
Authors:Shady Abu-Hussein, Raja Giryes
In recent years, Denoising Diffusion Probabilistic Models (DDPM) have caught significant attention. By composing a Markovian process that starts in the data domain and then gradually adds noise until reaching pure white noise, they achieve superior performance in learning data distributions. Yet, these models require a large number of diffusion steps to produce aesthetically pleasing samples, which is inefficient. In addition, unlike common generative adversarial networks, the latent space of diffusion models is not interpretable. In this work, we propose to generalize the denoising diffusion process into an Upsampling Diffusion Probabilistic Model (UDPM), in which we reduce the latent variable dimension in addition to the traditional noise level addition. As a result, we are able to sample images of size $256\times 256$ with only 7 diffusion steps, which is less than two orders of magnitude compared to standard DDPMs. We formally develop the Markovian diffusion processes of the UDPM, and demonstrate its generation capabilities on the popular FFHQ, LSUN horses, ImageNet, and AFHQv2 datasets. Another favorable property of UDPM is that it is very easy to interpolate its latent space, which is not the case with standard diffusion models. Our code is available online \url{https://github.com/shadyabh/UDPM}
PDF
点此查看论文截图
Diversify Your Vision Datasets with Automatic Diffusion-Based Augmentation
Authors:Lisa Dunlap, Alyssa Umino, Han Zhang, Jiezhi Yang, Joseph E. Gonzalez, Trevor Darrell
Many fine-grained classification tasks, like rare animal identification, have limited training data and consequently classifiers trained on these datasets often fail to generalize to variations in the domain like changes in weather or location. As such, we explore how natural language descriptions of the domains seen in training data can be used with large vision models trained on diverse pretraining datasets to generate useful variations of the training data. We introduce ALIA (Automated Language-guided Image Augmentation), a method which utilizes large vision and language models to automatically generate natural language descriptions of a dataset’s domains and augment the training data via language-guided image editing. To maintain data integrity, a model trained on the original dataset filters out minimal image edits and those which corrupt class-relevant information. The resulting dataset is visually consistent with the original training data and offers significantly enhanced diversity. On fine-grained and cluttered datasets for classification and detection, ALIA surpasses traditional data augmentation and text-to-image generated data by up to 15\%, often even outperforming equivalent additions of real data. Code is avilable at https://github.com/lisadunlap/ALIA.
PDF
点此查看论文截图
Break-A-Scene: Extracting Multiple Concepts from a Single Image
Authors:Omri Avrahami, Kfir Aberman, Ohad Fried, Daniel Cohen-Or, Dani Lischinski
Text-to-image model personalization aims to introduce a user-provided concept to the model, allowing its synthesis in diverse contexts. However, current methods primarily focus on the case of learning a single concept from multiple images with variations in backgrounds and poses, and struggle when adapted to a different scenario. In this work, we introduce the task of textual scene decomposition: given a single image of a scene that may contain several concepts, we aim to extract a distinct text token for each concept, enabling fine-grained control over the generated scenes. To this end, we propose augmenting the input image with masks that indicate the presence of target concepts. These masks can be provided by the user or generated automatically by a pre-trained segmentation model. We then present a novel two-phase customization process that optimizes a set of dedicated textual embeddings (handles), as well as the model weights, striking a delicate balance between accurately capturing the concepts and avoiding overfitting. We employ a masked diffusion loss to enable handles to generate their assigned concepts, complemented by a novel loss on cross-attention maps to prevent entanglement. We also introduce union-sampling, a training strategy aimed to improve the ability of combining multiple concepts in generated images. We use several automatic metrics to quantitatively compare our method against several baselines, and further affirm the results using a user study. Finally, we showcase several applications of our method. Project page is available at: https://omriavrahami.com/break-a-scene/
PDF Project page is available at: https://omriavrahami.com/break-a-scene/ Video available at: https://www.youtube.com/watch?v=-9EA-BhizgM
点此查看论文截图
UMat: Uncertainty-Aware Single Image High Resolution Material Capture
Authors:Carlos Rodriguez-Pardo, Henar Dominguez-Elvira, David Pascual-Hernandez, Elena Garces
We propose a learning-based method to recover normals, specularity, and roughness from a single diffuse image of a material, using microgeometry appearance as our primary cue. Previous methods that work on single images tend to produce over-smooth outputs with artifacts, operate at limited resolution, or train one model per class with little room for generalization. Previous methods that work on single images tend to produce over-smooth outputs with artifacts, operate at limited resolution, or train one model per class with little room for generalization. In contrast, in this work, we propose a novel capture approach that leverages a generative network with attention and a U-Net discriminator, which shows outstanding performance integrating global information at reduced computational complexity. We showcase the performance of our method with a real dataset of digitized textile materials and show that a commodity flatbed scanner can produce the type of diffuse illumination required as input to our method. Additionally, because the problem might be illposed -more than a single diffuse image might be needed to disambiguate the specular reflection- or because the training dataset is not representative enough of the real distribution, we propose a novel framework to quantify the model’s confidence about its prediction at test time. Our method is the first one to deal with the problem of modeling uncertainty in material digitization, increasing the trustworthiness of the process and enabling more intelligent strategies for dataset creation, as we demonstrate with an active learning experiment.
PDF CVPR 2023. Project website: https://carlosrodriguezpardo.es/projects/UMat/
点此查看论文截图
Parallel Sampling of Diffusion Models
Authors:Andy Shih, Suneel Belkhale, Stefano Ermon, Dorsa Sadigh, Nima Anari
Diffusion models are powerful generative models but suffer from slow sampling, often taking 1000 sequential denoising steps for one sample. As a result, considerable efforts have been directed toward reducing the number of denoising steps, but these methods hurt sample quality. Instead of reducing the number of denoising steps (trading quality for speed), in this paper we explore an orthogonal approach: can we run the denoising steps in parallel (trading compute for speed)? In spite of the sequential nature of the denoising steps, we show that surprisingly it is possible to parallelize sampling via Picard iterations, by guessing the solution of future denoising steps and iteratively refining until convergence. With this insight, we present ParaDiGMS, a novel method to accelerate the sampling of pretrained diffusion models by denoising multiple steps in parallel. ParaDiGMS is the first diffusion sampling method that enables trading compute for speed and is even compatible with existing fast sampling techniques such as DDIM and DPMSolver. Using ParaDiGMS, we improve sampling speed by 2-4x across a range of robotics and image generation models, giving state-of-the-art sampling speeds of 0.2s on 100-step DiffusionPolicy and 16s on 1000-step StableDiffusion-v2 with no measurable degradation of task reward, FID score, or CLIP score.
PDF
点此查看论文截图
Uni-ControlNet: All-in-One Control to Text-to-Image Diffusion Models
Authors:Shihao Zhao, Dongdong Chen, Yen-Chun Chen, Jianmin Bao, Shaozhe Hao, Lu Yuan, Kwan-Yee K. Wong
Text-to-Image diffusion models have made tremendous progress over the past two years, enabling the generation of highly realistic images based on open-domain text descriptions. However, despite their success, text descriptions often struggle to adequately convey detailed controls, even when composed of long and complex texts. Moreover, recent studies have also shown that these models face challenges in understanding such complex texts and generating the corresponding images. Therefore, there is a growing need to enable more control modes beyond text description. In this paper, we introduce Uni-ControlNet, a novel approach that allows for the simultaneous utilization of different local controls (e.g., edge maps, depth map, segmentation masks) and global controls (e.g., CLIP image embeddings) in a flexible and composable manner within one model. Unlike existing methods, Uni-ControlNet only requires the fine-tuning of two additional adapters upon frozen pre-trained text-to-image diffusion models, eliminating the huge cost of training from scratch. Moreover, thanks to some dedicated adapter designs, Uni-ControlNet only necessitates a constant number (i.e., 2) of adapters, regardless of the number of local or global controls used. This not only reduces the fine-tuning costs and model size, making it more suitable for real-world deployment, but also facilitate composability of different conditions. Through both quantitative and qualitative comparisons, Uni-ControlNet demonstrates its superiority over existing methods in terms of controllability, generation quality and composability. Code is available at \url{https://github.com/ShihaoZhaoZSH/Uni-ControlNet}.
PDF Code is available at https://github.com/ShihaoZhaoZSH/Uni-ControlNet