Few-Shot


2023-05-25 更新

Automated Few-shot Classification with Instruction-Finetuned Language Models

Authors:Rami Aly, Xingjian Shi, Kaixiang Lin, Aston Zhang, Andrew Gordon Wilson

A particularly successful class of approaches for few-shot learning combines language models with prompts — hand-crafted task descriptions that complement data samples. However, designing prompts by hand for each task commonly requires domain knowledge and substantial guesswork. We observe, in the context of classification tasks, that instruction finetuned language models exhibit remarkable prompt robustness, and we subsequently propose a simple method to eliminate the need for handcrafted prompts, named AuT-Few. This approach consists of (i) a prompt retrieval module that selects suitable task instructions from the instruction-tuning knowledge base, and (ii) the generation of two distinct, semantically meaningful, class descriptions and a selection mechanism via cross-validation. Over $12$ datasets, spanning $8$ classification tasks, we show that AuT-Few outperforms current state-of-the-art few-shot learning methods. Moreover, AuT-Few is the best ranking method across datasets on the RAFT few-shot benchmark. Notably, these results are achieved without task-specific handcrafted prompts on unseen tasks.
PDF

点此查看论文截图

Enhancing Few-shot Text-to-SQL Capabilities of Large Language Models: A Study on Prompt Design Strategies

Authors:Linyong Nan, Yilun Zhao, Weijin Zou, Narutatsu Ri, Jaesung Tae, Ellen Zhang, Arman Cohan, Dragomir Radev

In-context learning (ICL) has emerged as a new approach to various natural language processing tasks, utilizing large language models (LLMs) to make predictions based on context that has been supplemented with a few examples or task-specific instructions. In this paper, we aim to extend this method to question answering tasks that utilize structured knowledge sources, and improve Text-to-SQL systems by exploring various prompt design strategies for employing LLMs. We conduct a systematic investigation into different demonstration selection methods and optimal instruction formats for prompting LLMs in the Text-to-SQL task. Our approach involves leveraging the syntactic structure of an example’s SQL query to retrieve demonstrations, and we demonstrate that pursuing both diversity and similarity in demonstration selection leads to enhanced performance. Furthermore, we show that LLMs benefit from database-related knowledge augmentations. Our most effective strategy outperforms the state-of-the-art system by 2.5 points (Execution Accuracy) and the best fine-tuned system by 5.1 points on the Spider dataset. These results highlight the effectiveness of our approach in adapting LLMs to the Text-to-SQL task, and we present an analysis of the factors contributing to the success of our strategy.
PDF

点此查看论文截图

MetaAdapt: Domain Adaptive Few-Shot Misinformation Detection via Meta Learning

Authors:Zhenrui Yue, Huimin Zeng, Yang Zhang, Lanyu Shang, Dong Wang

With emerging topics (e.g., COVID-19) on social media as a source for the spreading misinformation, overcoming the distributional shifts between the original training domain (i.e., source domain) and such target domains remains a non-trivial task for misinformation detection. This presents an elusive challenge for early-stage misinformation detection, where a good amount of data and annotations from the target domain is not available for training. To address the data scarcity issue, we propose MetaAdapt, a meta learning based approach for domain adaptive few-shot misinformation detection. MetaAdapt leverages limited target examples to provide feedback and guide the knowledge transfer from the source to the target domain (i.e., learn to adapt). In particular, we train the initial model with multiple source tasks and compute their similarity scores to the meta task. Based on the similarity scores, we rescale the meta gradients to adaptively learn from the source tasks. As such, MetaAdapt can learn how to adapt the misinformation detection model and exploit the source data for improved performance in the target domain. To demonstrate the efficiency and effectiveness of our method, we perform extensive experiments to compare MetaAdapt with state-of-the-art baselines and large language models (LLMs) such as LLaMA, where MetaAdapt achieves better performance in domain adaptive few-shot misinformation detection with substantially reduced parameters on real-world datasets.
PDF Accepted to ACL 2023

点此查看论文截图

Mitigating Catastrophic Forgetting for Few-Shot Spoken Word Classification Through Meta-Learning

Authors:Ruan van der Merwe, Herman Kamper

We consider the problem of few-shot spoken word classification in a setting where a model is incrementally introduced to new word classes. This would occur in a user-defined keyword system where new words can be added as the system is used. In such a continual learning scenario, a model might start to misclassify earlier words as newer classes are added, i.e. catastrophic forgetting. To address this, we propose an extension to model-agnostic meta-learning (MAML): each inner learning loop, where a model “learns how to learn’’ new classes, ends with a single gradient update using stored templates from all the classes that the model has already seen (one template per class). We compare this method to OML (another extension of MAML) in few-shot isolated-word classification experiments on Google Commands and FACC. Our method consistently outperforms OML in experiments where the number of shots and the final number of classes are varied.
PDF 5 pages, 3 figures, Accepted to Interspeech 2023

点此查看论文截图

SPARSEFIT: Few-shot Prompting with Sparse Fine-tuning for Jointly Generating Predictions and Natural Language Explanations

Authors:Jesus Solano, Oana-Maria Camburu, Pasquale Minervini

Explaining the decisions of neural models is crucial for ensuring their trustworthiness at deployment time. Using Natural Language Explanations (NLEs) to justify a model’s predictions has recently gained increasing interest. However, this approach usually demands large datasets of human-written NLEs for the ground-truth answers, which are expensive and potentially infeasible for some applications. For models to generate high-quality NLEs when only a few NLEs are available, the fine-tuning of Pre-trained Language Models (PLMs) in conjunction with prompt-based learning recently emerged. However, PLMs typically have billions of parameters, making fine-tuning expensive. We propose SparseFit, a sparse few-shot fine-tuning strategy that leverages discrete prompts to jointly generate predictions and NLEs. We experiment with SparseFit on the T5 model and four datasets and compare it against state-of-the-art parameter-efficient fine-tuning techniques. We perform automatic and human evaluations to assess the quality of the model-generated NLEs, finding that fine-tuning only 6.8% of the model parameters leads to competitive results for both the task performance and the quality of the NLEs.
PDF

点此查看论文截图

Enhancing Black-Box Few-Shot Text Classification with Prompt-Based Data Augmentation

Authors:Danqing Luo, Chen Zhang, Jiahui Xu, Bin Wang, Yiming Chen, Yan Zhang, Haizhou Li

Training or finetuning large-scale language models (LLMs) such as GPT-3 requires substantial computation resources, motivating recent efforts to explore parameter-efficient adaptation to downstream tasks. One practical area of research is to treat these models as black boxes and interact with them through their inference APIs. In this paper, we investigate how to optimize few-shot text classification without accessing the gradients of the LLMs. To achieve this, we treat the black-box model as a feature extractor and train a classifier with the augmented text data. Data augmentation is performed using prompt-based finetuning on an auxiliary language model with a much smaller parameter size than the black-box model. Through extensive experiments on eight text classification datasets, we show that our approach, dubbed BT-Classifier, significantly outperforms state-of-the-art black-box few-shot learners and performs on par with methods that rely on full-model tuning.
PDF

点此查看论文截图

MIANet: Aggregating Unbiased Instance and General Information for Few-Shot Semantic Segmentation

Authors:Yong Yang, Qiong Chen, Yuan Feng, Tianlin Huang

Existing few-shot segmentation methods are based on the meta-learning strategy and extract instance knowledge from a support set and then apply the knowledge to segment target objects in a query set. However, the extracted knowledge is insufficient to cope with the variable intra-class differences since the knowledge is obtained from a few samples in the support set. To address the problem, we propose a multi-information aggregation network (MIANet) that effectively leverages the general knowledge, i.e., semantic word embeddings, and instance information for accurate segmentation. Specifically, in MIANet, a general information module (GIM) is proposed to extract a general class prototype from word embeddings as a supplement to instance information. To this end, we design a triplet loss that treats the general class prototype as an anchor and samples positive-negative pairs from local features in the support set. The calculated triplet loss can transfer semantic similarities among language identities from a word embedding space to a visual representation space. To alleviate the model biasing towards the seen training classes and to obtain multi-scale information, we then introduce a non-parametric hierarchical prior module (HPM) to generate unbiased instance-level information via calculating the pixel-level similarity between the support and query image features. Finally, an information fusion module (IFM) combines the general and instance information to make predictions for the query image. Extensive experiments on PASCAL-5i and COCO-20i show that MIANet yields superior performance and set a new state-of-the-art. Code is available at https://github.com/Aldrich2y/MIANet.
PDF Accepted to CVPR 2023

点此查看论文截图

The CoT Collection: Improving Zero-shot and Few-shot Learning of Language Models via Chain-of-Thought Fine-Tuning

Authors:Seungone Kim, Se June Joo, Doyoung Kim, Joel Jang, Seonghyeon Ye, Jamin Shin, Minjoon Seo

Large Language Models (LLMs) have shown enhanced capabilities of solving novel tasks by reasoning step-by-step known as Chain-of-Thought (CoT) reasoning; how can we instill the same capability of reasoning step-by-step on unseen tasks into LMs that possess less than <100B parameters? To address this question, we first introduce the CoT Collection, a new instruction-tuning dataset that augments 1.88 million CoT rationales across 1,060 tasks. We show that continually fine-tuning Flan-T5 (3B & 11B) with the CoT Collection enables the 3B & 11B LMs to perform CoT better on unseen tasks, leading to an improvement in the average zero-shot accuracy on 27 datasets of the BIG-Bench-Hard benchmark by +4.34% and +2.44%, respectively. Furthermore, we show that instruction tuning with CoT allows LMs to possess stronger few-shot learning capabilities, resulting in an improvement of +2.97% and +2.37% on 4 domain-specific tasks over Flan-T5 (3B & 11B), respectively. We make our CoT Collection data and our trained models publicly available at https://github.com/kaist-lklab/CoT-Collection.
PDF Work in Progress

点此查看论文截图

How to Solve Few-Shot Abusive Content Detection Using the Data We Actually Have

Authors:Viktor Hangya, Alexander Fraser

Due to the broad range of social media platforms and their user groups, the requirements of abusive language detection systems are varied and ever-changing. Already a large set of annotated corpora with different properties and label sets were created, such as hate or misogyny detection, but the form and targets of abusive speech are constantly changing. Since, the annotation of new corpora is expensive, in this work we leverage datasets we already have, covering a wide range of tasks related to abusive language detection, in order to build models cheaply for a new target label set and/or language, using only a few training examples of the target domain. We propose a two-step approach: first we train our model in a multitask fashion. We then carry out few-shot adaptation to the target requirements. Our experiments show that by leveraging already existing datasets and only a few-shots of the target task the performance of models can be improved not only monolingually but across languages as well. Our analysis also shows that our models acquire a general understanding of abusive language, since they improve the prediction of labels which are present only in the target dataset. We also analyze the trade-off between specializing the already existing datasets to a given target setup for best performance and its negative effects on model adaptability.
PDF

点此查看论文截图

Skill-Based Few-Shot Selection for In-Context Learning

Authors:Shengnan An, Bo Zhou, Zeqi Lin, Qiang Fu, Bei Chen, Nanning Zheng, Weizhu Chen, Jian-Guang Lou

In-Context learning is the paradigm that adapts large language models to downstream tasks by providing a few examples. Few-shot selection — selecting appropriate examples for each test instance separately — is important for in-context learning. In this paper, we propose Skill-KNN, a skill-based few-shot selection method for in-context learning. The key advantages of Skill-KNN include: (1) it addresses the problem that existing methods based on pre-trained embeddings can be easily biased by surface natural language features that are not important for the target task; (2) it does not require training or fine-tuning of any models, making it suitable for frequently expanding or changing example banks. The key insight is to optimize the inputs fed into the embedding model, rather than tuning the model itself. Technically, Skill-KNN generates the skill-based representations for each test case and candidate example by utilizing a pre-processing few-shot prompting, thus eliminating unimportant surface features. Experimental results across four cross-domain semantic parsing tasks and four backbone models show that Skill-KNN significantly outperforms existing methods.
PDF 18 pages, 6 figures

点此查看论文截图

WikiChat: A Few-Shot LLM-Based Chatbot Grounded with Wikipedia

Authors:Sina J. Semnani, Violet Z. Yao, Heidi C. Zhang, Monica S. Lam

Despite recent advances in Large Language Models (LLMs), users still cannot trust the information provided in their responses. LLMs cannot speak accurately about events that occurred after their training, which are often topics of great interest to users, and, as we show in this paper, they are highly prone to hallucination when talking about less popular (tail) topics. This paper presents WikiChat, a few-shot LLM-based chatbot that is grounded with live information from Wikipedia. Through many iterations of experimentation, we have crafte a pipeline based on information retrieval that (1) uses LLMs to suggest interesting and relevant facts that are individually verified against Wikipedia, (2) retrieves additional up-to-date information, and (3) composes coherent and engaging time-aware responses. We propose a novel hybrid human-and-LLM evaluation methodology to analyze the factuality and conversationality of LLM-based chatbots. We focus on evaluating important but previously neglected issues such as conversing about recent and tail topics. We evaluate WikiChat against strong fine-tuned and LLM-based baselines across a diverse set of conversation topics. We find that WikiChat outperforms all baselines in terms of the factual accuracy of its claims, by up to 12.1%, 28.3% and 32.7% on head, recent and tail topics, while matching GPT-3.5 in terms of providing natural, relevant, non-repetitive and informational responses.
PDF

点此查看论文截图

GRILL: Grounded Vision-language Pre-training via Aligning Text and Image Regions

Authors:Woojeong Jin, Subhabrata Mukherjee, Yu Cheng, Yelong Shen, Weizhu Chen, Ahmed Hassan Awadallah, Damien Jose, Xiang Ren

Generalization to unseen tasks is an important ability for few-shot learners to achieve better zero-/few-shot performance on diverse tasks. However, such generalization to vision-language tasks including grounding and generation tasks has been under-explored; existing few-shot VL models struggle to handle tasks that involve object grounding and multiple images such as visual commonsense reasoning or NLVR2. In this paper, we introduce GRILL, GRounded vIsion Language aLigning, a novel VL model that can be generalized to diverse tasks including visual question answering, captioning, and grounding tasks with no or very few training instances. Specifically, GRILL learns object grounding and localization by exploiting object-text alignments, which enables it to transfer to grounding tasks in a zero-/few-shot fashion. We evaluate our model on various zero-/few-shot VL tasks and show that it consistently surpasses the state-of-the-art few-shot methods.
PDF Preprint

点此查看论文截图

Large Language Models are In-Context Semantic Reasoners rather than Symbolic Reasoners

Authors:Xiaojuan Tang, Zilong Zheng, Jiaqi Li, Fanxu Meng, Song-Chun Zhu, Yitao Liang, Muhan Zhang

The emergent few-shot reasoning capabilities of Large Language Models (LLMs) have excited the natural language and machine learning community over recent years. Despite of numerous successful applications, the underlying mechanism of such in-context capabilities still remains unclear. In this work, we hypothesize that the learned \textit{semantics} of language tokens do the most heavy lifting during the reasoning process. Different from human’s symbolic reasoning process, the semantic representations of LLMs could create strong connections among tokens, thus composing a superficial logical chain. To test our hypothesis, we decouple semantics from the language reasoning process and evaluate three kinds of reasoning abilities, i.e., deduction, induction and abduction. Our findings reveal that semantics play a vital role in LLMs’ in-context reasoning — LLMs perform significantly better when semantics are consistent with commonsense but struggle to solve symbolic or counter-commonsense reasoning tasks by leveraging in-context new knowledge. The surprising observations question whether modern LLMs have mastered the inductive, deductive and abductive reasoning abilities as in human intelligence, and motivate research on unveiling the magic existing within the black-box LLMs. On the whole, our analysis provides a novel perspective on the role of semantics in developing and evaluating language models’ reasoning abilities. Code is available at {\url{https://github.com/XiaojuanTang/ICSR}}.
PDF

点此查看论文截图

Pre-training Intent-Aware Encoders for Zero- and Few-Shot Intent Classification

Authors:Mujeen Sung, James Gung, Elman Mansimov, Nikolaos Pappas, Raphael Shu, Salvatore Romeo, Yi Zhang, Vittorio Castelli

Intent classification (IC) plays an important role in task-oriented dialogue systems as it identifies user intents from given utterances. However, models trained on limited annotations for IC often suffer from a lack of generalization to unseen intent classes. We propose a novel pre-training method for text encoders that uses contrastive learning with intent psuedo-labels to produce embeddings that are well-suited for IC tasks. By applying this pre-training strategy, we also introduce the pre-trained intent-aware encoder (PIE). Specifically, we first train a tagger to identify key phrases within utterances that are crucial for interpreting intents. We then use these extracted phrases to create examples for pre-training a text encoder in a contrastive manner. As a result, our PIE model achieves up to 5.4% and 4.0% higher accuracy than the previous state-of-the-art pre-trained sentence encoder for the N-way zero- and one-shot settings on four IC datasets.
PDF

点此查看论文截图

Towards Few-shot Entity Recognition in Document Images: A Graph Neural Network Approach Robust to Image Manipulation

Authors:Prashant Krishnan, Zilong Wang, Yangkun Wang, Jingbo Shang

Recent advances of incorporating layout information, typically bounding box coordinates, into pre-trained language models have achieved significant performance in entity recognition from document images. Using coordinates can easily model the absolute position of each token, but they might be sensitive to manipulations in document images (e.g., shifting, rotation or scaling), especially when the training data is limited in few-shot settings. In this paper, we propose to further introduce the topological adjacency relationship among the tokens, emphasizing their relative position information. Specifically, we consider the tokens in the documents as nodes and formulate the edges based on the topological heuristics from the k-nearest bounding boxes. Such adjacency graphs are invariant to affine transformations including shifting, rotations and scaling. We incorporate these graphs into the pre-trained language model by adding graph neural network layers on top of the language model embeddings, leading to a novel model LAGER. Extensive experiments on two benchmark datasets show that LAGER significantly outperforms strong baselines under different few-shot settings and also demonstrate better robustness to manipulations.
PDF

点此查看论文截图

Meta-Learning For Vision-and-Language Cross-lingual Transfer

Authors:Hanxu Hu, Frank Keller

Current pre-trained vison-language models (PVLMs) achieve excellent performance on a range of multi-modal datasets. Recent work has aimed at building multilingual models, and a range of novel multilingual multi-modal datasets have been proposed. Current PVLMs typically perform poorly on these datasets when used for multi-modal zero-shot or few-shot cross-lingual transfer, especially for low-resource languages. To alleviate this problem, we propose a novel meta-learning fine-tuning framework. Our framework makes current PVLMs rapidly adaptive to new languages in vision-language scenarios by designing MAML in a cross-lingual multi-modal manner. Experiments show that our method boosts the performance of current state-of-the-art PVLMs in both zero-shot and few-shot cross-lingual transfer on a range of vision-language understanding tasks and datasets (XVNLI, xGQA, MaRVL, xFlicker&Co
PDF

点此查看论文截图

BUFFET: Benchmarking Large Language Models for Few-shot Cross-lingual Transfer

Authors:Akari Asai, Sneha Kudugunta, Xinyan Velocity Yu, Terra Blevins, Hila Gonen, Machel Reid, Yulia Tsvetkov, Sebastian Ruder, Hannaneh Hajishirzi

Despite remarkable advancements in few-shot generalization in natural language processing, most models are developed and evaluated primarily in English. To facilitate research on few-shot cross-lingual transfer, we introduce a new benchmark, called BUFFET, which unifies 15 diverse tasks across 54 languages in a sequence-to-sequence format and provides a fixed set of few-shot examples and instructions. BUFFET is designed to establish a rigorous and equitable evaluation framework for few-shot cross-lingual transfer across a broad range of tasks and languages. Using BUFFET, we perform thorough evaluations of state-of-the-art multilingual large language models with different transfer methods, namely in-context learning and fine-tuning. Our findings reveal significant room for improvement in few-shot in-context cross-lingual transfer. In particular, ChatGPT with in-context learning often performs worse than much smaller mT5-base models fine-tuned on English task data and few-shot in-language examples. Our analysis suggests various avenues for future research in few-shot cross-lingual transfer, such as improved pretraining, understanding, and future evaluations.
PDF The data and code is available at https://buffetfs.github.io/

点此查看论文截图

GPTAraEval: A Comprehensive Evaluation of ChatGPT on Arabic NLP

Authors:Md Tawkat Islam Khondaker, Abdul Waheed, El Moatez Billah Nagoudi, Muhammad Abdul-Mageed

The recent emergence of ChatGPT has brought a revolutionary change in the landscape of NLP. Although ChatGPT has consistently shown impressive performance on English benchmarks, its exact capabilities on most other languages remain largely unknown. To better understand ChatGPT’s capabilities on Arabic, we present a large-scale evaluation of the model on a broad range of Arabic NLP tasks. Namely, we evaluate ChatGPT on 32 diverse natural language understanding and generation tasks on over 60 different datasets. To the best of our knowledge, our work offers the first performance analysis of ChatGPT on Arabic NLP at such a massive scale. Our results show that, despite its success on English benchmarks, ChatGPT trained in-context (few-shot) is consistently outperformed by much smaller dedicated models finetuned on Arabic. These results suggest that there is significant place for improvement for instruction-tuned LLMs such as ChatGPT.
PDF Work in progress

点此查看论文截图

Benchmarking Arabic AI with Large Language Models

Authors:Ahmed Abdelali, Hamdy Mubarak, Shammur Absar Chowdhury, Maram Hasanain, Basel Mousi, Sabri Boughorbel, Yassine El Kheir, Daniel Izham, Fahim Dalvi, Majd Hawasly, Nizi Nazar, Yousseif Elshahawy, Ahmed Ali, Nadir Durrani, Natasa Milic-Frayling, Firoj Alam

With large Foundation Models (FMs), language technologies (AI in general) are entering a new paradigm: eliminating the need for developing large-scale task-specific datasets and supporting a variety of tasks through set-ups ranging from zero-shot to few-shot learning. However, understanding FMs capabilities requires a systematic benchmarking effort by comparing FMs performance with the state-of-the-art (SOTA) task-specific models. With that goal, past work focused on the English language and included a few efforts with multiple languages. Our study contributes to ongoing research by evaluating FMs performance for standard Arabic NLP and Speech processing, including a range of tasks from sequence tagging to content classification across diverse domains. We start with zero-shot learning using GPT-3.5-turbo, Whisper, and USM, addressing 33 unique tasks using 59 publicly available datasets resulting in 96 test setups. For a few tasks, FMs performs on par or exceeds the performance of the SOTA models but for the majority it under-performs. Given the importance of prompt for the FMs performance, we discuss our prompt strategies in detail and elaborate on our findings. Our future work on Arabic AI will explore few-shot prompting, expand the range of tasks, and investigate additional open-source models.
PDF Foundation Models, Large Language Models, Arabic NLP, Arabic Speech, Arabic AI, , CHatGPT Evaluation, USM Evaluation, Whisper Evaluation

点此查看论文截图

A RelEntLess Benchmark for Modelling Graded Relations between Named Entities

Authors:Asahi Ushio, Jose Camacho Collados, Steven Schockaert

Relations such as “is influenced by”, “is known for” or “is a competitor of” are inherently graded: we can rank entity pairs based on how well they satisfy these relations, but it is hard to draw a line between those pairs that satisfy them and those that do not. Such graded relations play a central role in many applications, yet they are typically not covered by existing Knowledge Graphs. In this paper, we consider the possibility of using Large Language Models (LLMs) to fill this gap. To this end, we introduce a new benchmark, in which entity pairs have to be ranked according to how much they satisfy a given graded relation. The task is formulated as a few-shot ranking problem, where models only have access to a description of the relation and five prototypical instances. We use the proposed benchmark to evaluate state-of-the-art relation embedding strategies as well as several recent LLMs, covering both publicly available LLMs and closed models such as GPT-4. Overall, we find a strong correlation between model size and performance, with smaller Language Models struggling to outperform a naive baseline. The results of the largest Flan-T5 and OPT models are remarkably strong, although a clear gap with human performance remains.
PDF

点此查看论文截图

Sentiment Analysis in the Era of Large Language Models: A Reality Check

Authors:Wenxuan Zhang, Yue Deng, Bing Liu, Sinno Jialin Pan, Lidong Bing

Sentiment analysis (SA) has been a long-standing research area in natural language processing. It can offer rich insights into human sentiments and opinions and has thus seen considerable interest from both academia and industry. With the advent of large language models (LLMs) such as ChatGPT, there is a great potential for their employment on SA problems. However, the extent to which existing LLMs can be leveraged for different sentiment analysis tasks remains unclear. This paper aims to provide a comprehensive investigation into the capabilities of LLMs in performing various sentiment analysis tasks, from conventional sentiment classification to aspect-based sentiment analysis and multifaceted analysis of subjective texts. We evaluate performance across 13 tasks on 26 datasets and compare the results against small language models (SLMs) trained on domain-specific datasets. Our study reveals that while LLMs demonstrate satisfactory performance in simpler tasks, they lag behind in more complex tasks requiring deeper understanding or structured sentiment information. However, LLMs significantly outperform SLMs in few-shot learning settings, suggesting their potential when annotation resources are limited. We also highlight the limitations of current evaluation practices in assessing LLMs’ SA abilities and propose a novel benchmark, \textsc{SentiEval}, for a more comprehensive and realistic evaluation. Data and code during our investigations are available at \url{https://github.com/DAMO-NLP-SG/LLM-Sentiment}.
PDF

点此查看论文截图

Training on Thin Air: Improve Image Classification with Generated Data

Authors:Yongchao Zhou, Hshmat Sahak, Jimmy Ba

Acquiring high-quality data for training discriminative models is a crucial yet challenging aspect of building effective predictive systems. In this paper, we present Diffusion Inversion, a simple yet effective method that leverages the pre-trained generative model, Stable Diffusion, to generate diverse, high-quality training data for image classification. Our approach captures the original data distribution and ensures data coverage by inverting images to the latent space of Stable Diffusion, and generates diverse novel training images by conditioning the generative model on noisy versions of these vectors. We identify three key components that allow our generated images to successfully supplant the original dataset, leading to a 2-3x enhancement in sample complexity and a 6.5x decrease in sampling time. Moreover, our approach consistently outperforms generic prompt-based steering methods and KNN retrieval baseline across a wide range of datasets. Additionally, we demonstrate the compatibility of our approach with widely-used data augmentation techniques, as well as the reliability of the generated data in supporting various neural architectures and enhancing few-shot learning.
PDF

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录