MMT


2023-05-23 更新

Scene Graph as Pivoting: Inference-time Image-free Unsupervised Multimodal Machine Translation with Visual Scene Hallucination

Authors:Hao Fei, Qian Liu, Meishan Zhang, Min Zhang, Tat-Seng Chua

In this work, we investigate a more realistic unsupervised multimodal machine translation (UMMT) setup, inference-time image-free UMMT, where the model is trained with source-text image pairs, and tested with only source-text inputs. First, we represent the input images and texts with the visual and language scene graphs (SG), where such fine-grained vision-language features ensure a holistic understanding of the semantics. To enable pure-text input during inference, we devise a visual scene hallucination mechanism that dynamically generates pseudo visual SG from the given textual SG. Several SG-pivoting based learning objectives are introduced for unsupervised translation training. On the benchmark Multi30K data, our SG-based method outperforms the best-performing baseline by significant BLEU scores on the task and setup, helping yield translations with better completeness, relevance and fluency without relying on paired images. Further in-depth analyses reveal how our model advances in the task setting.
PDF

点此查看论文截图

Iterative Adversarial Attack on Image-guided Story Ending Generation

Authors:Youze Wang, Wenbo Hu, Richang Hong

Multimodal learning involves developing models that can integrate information from various sources like images and texts. In this field, multimodal text generation is a crucial aspect that involves processing data from multiple modalities and outputting text. The image-guided story ending generation (IgSEG) is a particularly significant task, targeting on an understanding of complex relationships between text and image data with a complete story text ending. Unfortunately, deep neural networks, which are the backbone of recent IgSEG models, are vulnerable to adversarial samples. Current adversarial attack methods mainly focus on single-modality data and do not analyze adversarial attacks for multimodal text generation tasks that use cross-modal information. To this end, we propose an iterative adversarial attack method (Iterative-attack) that fuses image and text modality attacks, allowing for an attack search for adversarial text and image in an more effective iterative way. Experimental results demonstrate that the proposed method outperforms existing single-modal and non-iterative multimodal attack methods, indicating the potential for improving the adversarial robustness of multimodal text generation models, such as multimodal machine translation, multimodal question answering, etc.
PDF

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录