视频理解


2023-05-11 更新

Transformer-based model for monocular visual odometry: a video understanding approach

Authors:André O. Françani, Marcos R. O. A. Maximo

Estimating the camera pose given images of a single camera is a traditional task in mobile robots and autonomous vehicles. This problem is called monocular visual odometry and it often relies on geometric approaches that require engineering effort for a specific scenario. Deep learning methods have shown to be generalizable after proper training and a considerable amount of available data. Transformer-based architectures have dominated the state-of-the-art in natural language processing and computer vision tasks, such as image and video understanding. In this work, we deal with the monocular visual odometry as a video understanding task to estimate the 6-DoF camera’s pose. We contribute by presenting the TSformer-VO model based on spatio-temporal self-attention mechanisms to extract features from clips and estimate the motions in an end-to-end manner. Our approach achieved competitive state-of-the-art performance compared with geometry-based and deep learning-based methods on the KITTI visual odometry dataset, outperforming the DeepVO implementation highly accepted in the visual odometry community.
PDF

点此查看论文截图

VideoChat: Chat-Centric Video Understanding

Authors:KunChang Li, Yinan He, Yi Wang, Yizhuo Li, Wenhai Wang, Ping Luo, Yali Wang, Limin Wang, Yu Qiao

In this study, we initiate an exploration into video understanding by introducing VideoChat, an end-to-end chat-centric video understanding system. It integrates video foundation models and large language models via a learnable neural interface, excelling in spatiotemporal reasoning, event localization, and causal relationship inference. To instructively tune this system, we propose a video-centric instruction dataset, composed of thousands of videos matched with detailed descriptions and conversations. This dataset emphasizes spatiotemporal reasoning and causal relationships, providing a valuable asset for training chat-centric video understanding systems. Preliminary qualitative experiments reveal our system’s potential across a broad spectrum of video applications and set the standard for future research. Access our code and data at https://github.com/OpenGVLab/Ask-Anything
PDF Technical report

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录